#!/usr/bin/env python # # Copyright 2009,2010,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, optfir import filter_swig as filter class channelizer_ccf(gr.hier_block2): ''' Make a Polyphase Filter channelizer (complex in, complex out, floating-point taps) This simplifies the interface by allowing a single input stream to connect to this block. It will then output a stream for each channel. ''' def __init__(self, numchans, taps=None, oversample_rate=1, atten=100): gr.hier_block2.__init__(self, "pfb_channelizer_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(numchans, numchans, gr.sizeof_gr_complex)) # Output signature self._nchans = numchans self._oversample_rate = oversample_rate if taps is not None: self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.1 made = False while not made: try: self._taps = optfir.low_pass(1, self._nchans, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._nchans) self.pfb = filter.pfb_channelizer_ccf(self._nchans, self._taps, self._oversample_rate) self.connect(self, self.s2ss) for i in xrange(self._nchans): self.connect((self.s2ss,i), (self.pfb,i)) self.connect((self.pfb,i), (self,i)) def set_channel_map(self, newmap): self.pfb.set_channel_map(newmap)