#!/usr/bin/env python # # Copyright 2011 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gr_unittest import digital_swig as digital import math, random def get_cplx(): return complex(2*random.randint(0,1) - 1, 0) def get_n_cplx(): return complex(random.random()-0.5, random.random()-0.5) class test_mpsk_snr_est (gr_unittest.TestCase): def setUp (self): self.tb = gr.top_block () random.seed(0) # make repeatable N = 10000 self._noise = [get_n_cplx() for i in xrange(N)] self._bits = [get_cplx() for i in xrange(N)] def tearDown (self): self.tb = None def mpsk_snr_est_setup (self, op): result = [] for i in xrange(1,6): src_data = [b+(i*n) for b,n in zip(self._bits, self._noise)] src = gr.vector_source_c (src_data) dst = gr.null_sink (gr.sizeof_gr_complex) tb = gr.top_block () tb.connect (src, op) tb.connect (op, dst) tb.run () # run the graph and wait for it to finish result.append(op.snr()) return result def test_mpsk_snr_est_simple (self): expected_result = [11.48, 5.91, 3.30, 2.08, 1.46] N = 10000 alpha = 0.001 op = digital.mpsk_snr_est_cc (digital.SNR_EST_SIMPLE, N, alpha) actual_result = self.mpsk_snr_est_setup(op) self.assertFloatTuplesAlmostEqual (expected_result, actual_result, 2) def test_mpsk_snr_est_skew (self): expected_result = [11.48, 5.91, 3.30, 2.08, 1.46] N = 10000 alpha = 0.001 op = digital.mpsk_snr_est_cc (digital.SNR_EST_SKEW, N, alpha) actual_result = self.mpsk_snr_est_setup(op) self.assertFloatTuplesAlmostEqual (expected_result, actual_result, 2) def test_mpsk_snr_est_m2m4 (self): expected_result = [11.02, 6.20, 4.98, 5.16, 5.66] N = 10000 alpha = 0.001 op = digital.mpsk_snr_est_cc (digital.SNR_EST_M2M4, N, alpha) actual_result = self.mpsk_snr_est_setup(op) self.assertFloatTuplesAlmostEqual (expected_result, actual_result, 2) def test_mpsk_snr_est_svn (self): expected_result = [10.90, 6.00, 4.76, 4.97, 5.49] N = 10000 alpha = 0.001 op = digital.mpsk_snr_est_cc (digital.SNR_EST_SVR, N, alpha) actual_result = self.mpsk_snr_est_setup(op) self.assertFloatTuplesAlmostEqual (expected_result, actual_result, 2) def test_probe_mpsk_snr_est_m2m4 (self): expected_result = [11.02, 6.20, 4.98, 5.16, 5.66] actual_result = [] for i in xrange(1,6): src_data = [b+(i*n) for b,n in zip(self._bits, self._noise)] src = gr.vector_source_c (src_data) N = 10000 alpha = 0.001 op = digital.probe_mpsk_snr_est_c (digital.SNR_EST_M2M4, N, alpha) tb = gr.top_block () tb.connect (src, op) tb.run () # run the graph and wait for it to finish actual_result.append(op.snr()) self.assertFloatTuplesAlmostEqual (expected_result, actual_result, 2) if __name__ == '__main__': # Test various SNR estimators; we're not using a Gaussian # noise source, so these estimates have no real meaning; # just a sanity check. gr_unittest.run(test_mpsk_snr_est, "test_mpsk_snr_est.xml")