/* -*- c++ -*- */ /* * Copyright 2009-2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <cstdio> #include <cmath> #include <digital_pfb_clock_sync_ccf.h> #include <gr_fir_ccf.h> #include <gr_fir_util.h> #include <gr_io_signature.h> #include <gr_math.h> digital_pfb_clock_sync_ccf_sptr digital_make_pfb_clock_sync_ccf(double sps, float loop_bw, const std::vector<float> &taps, unsigned int filter_size, float init_phase, float max_rate_deviation, int osps) { return gnuradio::get_initial_sptr(new digital_pfb_clock_sync_ccf (sps, loop_bw, taps, filter_size, init_phase, max_rate_deviation, osps)); } static int ios[] = {sizeof(gr_complex), sizeof(float), sizeof(float), sizeof(float)}; static std::vector<int> iosig(ios, ios+sizeof(ios)/sizeof(int)); digital_pfb_clock_sync_ccf::digital_pfb_clock_sync_ccf (double sps, float loop_bw, const std::vector<float> &taps, unsigned int filter_size, float init_phase, float max_rate_deviation, int osps) : gr_block ("pfb_clock_sync_ccf", gr_make_io_signature (1, 1, sizeof(gr_complex)), gr_make_io_signaturev (1, 4, iosig)), d_updated (false), d_nfilters(filter_size), d_max_dev(max_rate_deviation), d_osps(osps), d_error(0), d_out_idx(0) { d_nfilters = filter_size; d_sps = floor(sps); // Set the damping factor for a critically damped system d_damping = sqrtf(2.0f)/2.0f; // Set the bandwidth, which will then call update_gains() set_loop_bandwidth(loop_bw); // Store the last filter between calls to work // The accumulator keeps track of overflow to increment the stride correctly. // set it here to the fractional difference based on the initial phaes d_k = init_phase; d_rate = (sps-floor(sps))*(double)d_nfilters; d_rate_i = (int)floor(d_rate); d_rate_f = d_rate - (float)d_rate_i; d_filtnum = (int)floor(d_k); d_filters = std::vector<gr_fir_ccf*>(d_nfilters); d_diff_filters = std::vector<gr_fir_ccf*>(d_nfilters); // Create an FIR filter for each channel and zero out the taps std::vector<float> vtaps(0, d_nfilters); for(int i = 0; i < d_nfilters; i++) { d_filters[i] = gr_fir_util::create_gr_fir_ccf(vtaps); d_diff_filters[i] = gr_fir_util::create_gr_fir_ccf(vtaps); } // Now, actually set the filters' taps std::vector<float> dtaps; create_diff_taps(taps, dtaps); set_taps(taps, d_taps, d_filters); set_taps(dtaps, d_dtaps, d_diff_filters); } digital_pfb_clock_sync_ccf::~digital_pfb_clock_sync_ccf () { for(int i = 0; i < d_nfilters; i++) { delete d_filters[i]; delete d_diff_filters[i]; } } bool digital_pfb_clock_sync_ccf::check_topology(int ninputs, int noutputs) { return noutputs == 1 || noutputs == 4; } /******************************************************************* SET FUNCTIONS *******************************************************************/ void digital_pfb_clock_sync_ccf::set_loop_bandwidth(float bw) { if(bw < 0) { throw std::out_of_range ("digital_pfb_clock_sync_cc: invalid bandwidth. Must be >= 0."); } d_loop_bw = bw; update_gains(); } void digital_pfb_clock_sync_ccf::set_damping_factor(float df) { if(df < 0 || df > 1.0) { throw std::out_of_range ("digital_pfb_clock_sync_cc: invalid damping factor. Must be in [0,1]."); } d_damping = df; update_gains(); } void digital_pfb_clock_sync_ccf::set_alpha(float alpha) { if(alpha < 0 || alpha > 1.0) { throw std::out_of_range ("digital_pfb_clock_sync_cc: invalid alpha. Must be in [0,1]."); } d_alpha = alpha; } void digital_pfb_clock_sync_ccf::set_beta(float beta) { if(beta < 0 || beta > 1.0) { throw std::out_of_range ("digital_pfb_clock_sync_cc: invalid beta. Must be in [0,1]."); } d_beta = beta; } /******************************************************************* GET FUNCTIONS *******************************************************************/ float digital_pfb_clock_sync_ccf::get_loop_bandwidth() const { return d_loop_bw; } float digital_pfb_clock_sync_ccf::get_damping_factor() const { return d_damping; } float digital_pfb_clock_sync_ccf::get_alpha() const { return d_alpha; } float digital_pfb_clock_sync_ccf::get_beta() const { return d_beta; } float digital_pfb_clock_sync_ccf::get_clock_rate() const { return d_rate_f; } /******************************************************************* *******************************************************************/ void digital_pfb_clock_sync_ccf::update_gains() { float denom = (1.0 + 2.0*d_damping*d_loop_bw + d_loop_bw*d_loop_bw); d_alpha = (4*d_damping*d_loop_bw) / denom; d_beta = (4*d_loop_bw*d_loop_bw) / denom; } void digital_pfb_clock_sync_ccf::set_taps (const std::vector<float> &newtaps, std::vector< std::vector<float> > &ourtaps, std::vector<gr_fir_ccf*> &ourfilter) { int i,j; unsigned int ntaps = newtaps.size(); d_taps_per_filter = (unsigned int)ceil((double)ntaps/(double)d_nfilters); // Create d_numchan vectors to store each channel's taps ourtaps.resize(d_nfilters); // Make a vector of the taps plus fill it out with 0's to fill // each polyphase filter with exactly d_taps_per_filter std::vector<float> tmp_taps; tmp_taps = newtaps; while((float)(tmp_taps.size()) < d_nfilters*d_taps_per_filter) { tmp_taps.push_back(0.0); } // Partition the filter for(i = 0; i < d_nfilters; i++) { // Each channel uses all d_taps_per_filter with 0's if not enough taps to fill out ourtaps[i] = std::vector<float>(d_taps_per_filter, 0); for(j = 0; j < d_taps_per_filter; j++) { ourtaps[i][j] = tmp_taps[i + j*d_nfilters]; } // Build a filter for each channel and add it's taps to it ourfilter[i]->set_taps(ourtaps[i]); } // Set the history to ensure enough input items for each filter set_history (d_taps_per_filter + d_sps); // Make sure there is enough output space for d_osps outputs/input. set_output_multiple(d_osps); d_updated = true; } void digital_pfb_clock_sync_ccf::create_diff_taps(const std::vector<float> &newtaps, std::vector<float> &difftaps) { std::vector<float> diff_filter(3); diff_filter[0] = -1; diff_filter[1] = 0; diff_filter[2] = 1; float pwr = 0; difftaps.push_back(0); for(unsigned int i = 0; i < newtaps.size()-2; i++) { float tap = 0; for(int j = 0; j < 3; j++) { tap += diff_filter[j]*newtaps[i+j]; pwr += fabsf(tap); } difftaps.push_back(tap); } difftaps.push_back(0); for(unsigned int i = 0; i < difftaps.size(); i++) { difftaps[i] *= pwr; } } std::string digital_pfb_clock_sync_ccf::get_taps_as_string() { int i, j; std::stringstream str; str.precision(4); str.setf(std::ios::scientific); str << "[ "; for(i = 0; i < d_nfilters; i++) { str << "[" << d_taps[i][0] << ", "; for(j = 1; j < d_taps_per_filter-1; j++) { str << d_taps[i][j] << ", "; } str << d_taps[i][j] << "],"; } str << " ]" << std::endl; return str.str(); } std::string digital_pfb_clock_sync_ccf::get_diff_taps_as_string() { int i, j; std::stringstream str; str.precision(4); str.setf(std::ios::scientific); str << "[ "; for(i = 0; i < d_nfilters; i++) { str << "[" << d_dtaps[i][0] << ", "; for(j = 1; j < d_taps_per_filter-1; j++) { str << d_dtaps[i][j] << ", "; } str << d_dtaps[i][j] << "],"; } str << " ]" << std::endl; return str.str(); } std::vector< std::vector<float> > digital_pfb_clock_sync_ccf::get_taps() { return d_taps; } std::vector< std::vector<float> > digital_pfb_clock_sync_ccf::get_diff_taps() { return d_dtaps; } std::vector<float> digital_pfb_clock_sync_ccf::get_channel_taps(int channel) { std::vector<float> taps; for(int i = 0; i < d_taps_per_filter; i++) { taps.push_back(d_taps[channel][i]); } return taps; } std::vector<float> digital_pfb_clock_sync_ccf::get_diff_channel_taps(int channel) { std::vector<float> taps; for(int i = 0; i < d_taps_per_filter; i++) { taps.push_back(d_dtaps[channel][i]); } return taps; } int digital_pfb_clock_sync_ccf::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { gr_complex *in = (gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; float *err = NULL, *outrate = NULL, *outk = NULL; if(output_items.size() == 4) { err = (float *) output_items[1]; outrate = (float*)output_items[2]; outk = (float*)output_items[3]; } if (d_updated) { d_updated = false; return 0; // history requirements may have changed. } // We need this many to process one output int nrequired = ninput_items[0] - d_taps_per_filter - d_osps; int i = 0, count = 0; float error_r, error_i; // produce output as long as we can and there are enough input samples while((i < noutput_items) && (count < nrequired)) { while(d_out_idx < d_osps) { d_filtnum = (int)floor(d_k); // Keep the current filter number in [0, d_nfilters] // If we've run beyond the last filter, wrap around and go to next sample // If we've go below 0, wrap around and go to previous sample while(d_filtnum >= d_nfilters) { d_k -= d_nfilters; d_filtnum -= d_nfilters; count += 1; } while(d_filtnum < 0) { d_k += d_nfilters; d_filtnum += d_nfilters; count -= 1; } out[i+d_out_idx] = d_filters[d_filtnum]->filter(&in[count+d_out_idx]); d_k = d_k + d_rate_i + d_rate_f; // update phase d_out_idx++; if(output_items.size() == 4) { err[i] = d_error; outrate[i] = d_rate_f; outk[i] = d_k; } // We've run out of output items we can create; return now. if(i+d_out_idx >= noutput_items) { consume_each(count); return i; } } // reset here; if we didn't complete a full osps samples last time, // the early return would take care of it. d_out_idx = 0; // Update the phase and rate estimates for this symbol gr_complex diff = d_diff_filters[d_filtnum]->filter(&in[count]); error_r = out[i].real() * diff.real(); error_i = out[i].imag() * diff.imag(); d_error = (error_i + error_r) / 2.0; // average error from I&Q channel // Run the control loop to update the current phase (k) and // tracking rate estimates based on the error value d_rate_f = d_rate_f + d_beta*d_error; d_k = d_k + d_alpha*d_error; // Keep our rate within a good range d_rate_f = gr_branchless_clip(d_rate_f, d_max_dev); i+=d_osps; count += (int)floor(d_sps); } consume_each(count); return i; }