/* -*- c++ -*- */ /* * Copyright 2005,2006,2007,2010,2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <gr_io_signature.h> #include <gr_prefs.h> #include <digital_mpsk_receiver_cc.h> #include <stdexcept> #include <gr_math.h> #include <gr_expj.h> #include <gri_mmse_fir_interpolator_cc.h> #define M_TWOPI (2*M_PI) #define VERBOSE_MM 0 // Used for debugging symbol timing loop #define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking // Public constructor digital_mpsk_receiver_cc_sptr digital_make_mpsk_receiver_cc(unsigned int M, float theta, float loop_bw, float fmin, float fmax, float mu, float gain_mu, float omega, float gain_omega, float omega_rel) { return gnuradio::get_initial_sptr(new digital_mpsk_receiver_cc (M, theta, loop_bw, fmin, fmax, mu, gain_mu, omega, gain_omega, omega_rel)); } digital_mpsk_receiver_cc::digital_mpsk_receiver_cc (unsigned int M, float theta, float loop_bw, float fmin, float fmax, float mu, float gain_mu, float omega, float gain_omega, float omega_rel) : gr_block ("mpsk_receiver_cc", gr_make_io_signature (1, 1, sizeof (gr_complex)), gr_make_io_signature (1, 1, sizeof (gr_complex))), gri_control_loop(loop_bw, fmax, fmin), d_M(M), d_theta(theta), d_current_const_point(0), d_mu(mu), d_gain_mu(gain_mu), d_gain_omega(gain_omega), d_omega_rel(omega_rel), d_max_omega(0), d_min_omega(0), d_p_2T(0), d_p_1T(0), d_p_0T(0), d_c_2T(0), d_c_1T(0), d_c_0T(0) { d_interp = new gri_mmse_fir_interpolator_cc(); d_dl_idx = 0; set_omega(omega); if (omega <= 0.0) throw std::out_of_range ("clock rate must be > 0"); if (gain_mu < 0 || gain_omega < 0) throw std::out_of_range ("Gains must be non-negative"); assert(d_interp->ntaps() <= DLLEN); // zero double length delay line. for (unsigned int i = 0; i < 2 * DLLEN; i++) d_dl[i] = gr_complex(0.0,0.0); set_modulation_order(d_M); } digital_mpsk_receiver_cc::~digital_mpsk_receiver_cc () { delete d_interp; } void digital_mpsk_receiver_cc::set_modulation_order(unsigned int M) { // build the constellation vector from M make_constellation(); // Select a phase detector and a decision maker for the modulation order switch(d_M) { case 2: // optimized algorithms for BPSK d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_bpsk; //bpsk; d_decision = &digital_mpsk_receiver_cc::decision_bpsk; break; case 4: // optimized algorithms for QPSK d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_qpsk; //qpsk; d_decision = &digital_mpsk_receiver_cc::decision_qpsk; break; default: // generic algorithms for any M (power of 2?) but not pretty d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_generic; d_decision = &digital_mpsk_receiver_cc::decision_generic; break; } } void digital_mpsk_receiver_cc::set_gain_omega_rel(float omega_rel) { d_omega_rel = omega_rel; set_omega(d_omega); } void digital_mpsk_receiver_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) { unsigned ninputs = ninput_items_required.size(); for (unsigned i=0; i < ninputs; i++) ninput_items_required[i] = (int) ceil((noutput_items * d_omega) + d_interp->ntaps()); } // FIXME add these back in an test difference in performance float digital_mpsk_receiver_cc::phase_error_detector_qpsk(gr_complex sample) const { float phase_error = 0; if(fabsf(sample.real()) > fabsf(sample.imag())) { if(sample.real() > 0) phase_error = -sample.imag(); else phase_error = sample.imag(); } else { if(sample.imag() > 0) phase_error = sample.real(); else phase_error = -sample.real(); } return phase_error; } float digital_mpsk_receiver_cc::phase_error_detector_bpsk(gr_complex sample) const { return -(sample.real()*sample.imag()); } float digital_mpsk_receiver_cc::phase_error_detector_generic(gr_complex sample) const { //return gr_fast_atan2f(sample*conj(d_constellation[d_current_const_point])); return -arg(sample*conj(d_constellation[d_current_const_point])); } unsigned int digital_mpsk_receiver_cc::decision_bpsk(gr_complex sample) const { return (gr_branchless_binary_slicer(sample.real()) ^ 1); //return gr_binary_slicer(sample.real()) ^ 1; } unsigned int digital_mpsk_receiver_cc::decision_qpsk(gr_complex sample) const { unsigned int index; //index = gr_branchless_quad_0deg_slicer(sample); index = gr_quad_0deg_slicer(sample); return index; } unsigned int digital_mpsk_receiver_cc::decision_generic(gr_complex sample) const { unsigned int min_m = 0; float min_s = 65535; // Develop all possible constellation points and find the one that minimizes // the Euclidean distance (error) with the sample for(unsigned int m=0; m < d_M; m++) { gr_complex diff = norm(d_constellation[m] - sample); if(fabs(diff.real()) < min_s) { min_s = fabs(diff.real()); min_m = m; } } // Return the index of the constellation point that minimizes the error return min_m; } void digital_mpsk_receiver_cc::make_constellation() { for(unsigned int m=0; m < d_M; m++) { d_constellation.push_back(gr_expj((M_TWOPI/d_M)*m)); } } void digital_mpsk_receiver_cc::mm_sampler(const gr_complex symbol) { gr_complex sample, nco; d_mu--; // skip a number of symbols between sampling d_phase += d_freq; // increment the phase based on the frequency of the rotation // Keep phase clamped and not walk to infinity while(d_phase > M_TWOPI) d_phase -= M_TWOPI; while(d_phase < -M_TWOPI) d_phase += M_TWOPI; nco = gr_expj(d_phase+d_theta); // get the NCO value for derotating the current sample sample = nco*symbol; // get the downconverted symbol // Fill up the delay line for the interpolator d_dl[d_dl_idx] = sample; d_dl[(d_dl_idx + DLLEN)] = sample; // put this in the second half of the buffer for overflows d_dl_idx = (d_dl_idx+1) % DLLEN; // Keep the delay line index in bounds } void digital_mpsk_receiver_cc::mm_error_tracking(gr_complex sample) { gr_complex u, x, y; float mm_error = 0; // Make sample timing corrections // set the delayed samples d_p_2T = d_p_1T; d_p_1T = d_p_0T; d_p_0T = sample; d_c_2T = d_c_1T; d_c_1T = d_c_0T; d_current_const_point = (*this.*d_decision)(d_p_0T); // make a decision on the sample value d_c_0T = d_constellation[d_current_const_point]; x = (d_c_0T - d_c_2T) * conj(d_p_1T); y = (d_p_0T - d_p_2T) * conj(d_c_1T); u = y - x; mm_error = u.real(); // the error signal is in the real part mm_error = gr_branchless_clip(mm_error, 1.0); // limit mm_val d_omega = d_omega + d_gain_omega * mm_error; // update omega based on loop error d_omega = d_omega_mid + gr_branchless_clip(d_omega-d_omega_mid, d_omega_rel); // make sure we don't walk away d_mu += d_omega + d_gain_mu * mm_error; // update mu based on loop error #if VERBOSE_MM printf("mm: mu: %f omega: %f mm_error: %f sample: %f+j%f constellation: %f+j%f\n", d_mu, d_omega, mm_error, sample.real(), sample.imag(), d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag()); #endif } void digital_mpsk_receiver_cc::phase_error_tracking(gr_complex sample) { float phase_error = 0; // Make phase and frequency corrections based on sampled value phase_error = (*this.*d_phase_error_detector)(sample); advance_loop(phase_error); phase_wrap(); frequency_limit(); #if VERBOSE_COSTAS printf("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f constellation: %f+j%f\n", phase_error, d_phase, d_freq, sample.real(), sample.imag(), d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag()); #endif } int digital_mpsk_receiver_cc::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; int i=0, o=0; while((o < noutput_items) && (i < ninput_items[0])) { while((d_mu > 1) && (i < ninput_items[0])) { mm_sampler(in[i]); // puts symbols into a buffer and adjusts d_mu i++; } if(i < ninput_items[0]) { gr_complex interp_sample = d_interp->interpolate(&d_dl[d_dl_idx], d_mu); mm_error_tracking(interp_sample); // corrects M&M sample time phase_error_tracking(interp_sample); // corrects phase and frequency offsets out[o++] = interp_sample; } } #if 0 printf("ninput_items: %d noutput_items: %d consuming: %d returning: %d\n", ninput_items[0], noutput_items, i, o); #endif consume_each(i); return o; }