/* -*- c++ -*- */ /* * Copyright 2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_DIGITAL_KURTOTIC_EQUALIZER_CC_H #define INCLUDED_DIGITAL_KURTOTIC_EQUALIZER_CC_H #include <digital_api.h> #include <gr_adaptive_fir_ccc.h> #include <gr_math.h> #include <iostream> class digital_kurtotic_equalizer_cc; typedef boost::shared_ptr<digital_kurtotic_equalizer_cc> digital_kurtotic_equalizer_cc_sptr; DIGITAL_API digital_kurtotic_equalizer_cc_sptr digital_make_kurtotic_equalizer_cc(int num_taps, float mu); /*! * \brief Implements a kurtosis-based adaptive equalizer on complex stream * \ingroup eq_blk * * Y. Guo, J. Zhao, Y. Sun, "Sign kurtosis maximization based blind * equalization algorithm," IEEE Conf. on Control, Automation, * Robotics and Vision, Vol. 3, Dec. 2004, pp. 2052 - 2057. */ class DIGITAL_API digital_kurtotic_equalizer_cc : public gr_adaptive_fir_ccc { private: float d_mu; float d_p, d_m; gr_complex d_q, d_u; float d_alpha_p, d_alpha_q, d_alpha_m; friend DIGITAL_API digital_kurtotic_equalizer_cc_sptr digital_make_kurtotic_equalizer_cc(int num_taps, float mu); digital_kurtotic_equalizer_cc(int num_taps, float mu); gr_complex sign(gr_complex x) { float re = (float)(x.real() >= 0.0f); float im = (float)(x.imag() >= 0.0f); return gr_complex(re, im); } protected: virtual gr_complex error(const gr_complex &out) { // p = E[|z|^2] // q = E[z^2] // m = E[|z|^4] // u = E[kurtosis(z)] float nrm = norm(out); gr_complex cnj = conj(out); float epsilon_f = 1e-12; gr_complex epsilon_c = gr_complex(1e-12, 1e-12); d_p = (1-d_alpha_p)*d_p + (d_alpha_p)*nrm + epsilon_f; d_q = (1-d_alpha_q)*d_q + (d_alpha_q)*out*out + epsilon_c; d_m = (1-d_alpha_m)*d_m + (d_alpha_m)*nrm*nrm + epsilon_f; d_u = d_m - 2.0f*(d_p*d_p) - d_q*d_q; gr_complex F = (1.0f / (d_p*d_p*d_p)) * (sign(d_u) * (nrm*cnj - 2.0f*d_p*cnj - conj(d_q)*out) - abs(d_u)*cnj); //std::cout << "out: " << out << " p: " << d_p << " q: " << d_q; //std::cout << " m: " << d_m << " u: " << d_u << std::endl; //std::cout << "error: " << F << std::endl; float re = gr_clip(F.real(), 1.0); float im = gr_clip(F.imag(), 1.0); return gr_complex(re, im); } virtual void update_tap(gr_complex &tap, const gr_complex &in) { tap += d_mu*in*d_error; } public: void set_gain(float mu) { if(mu < 0) throw std::out_of_range("digital_kurtotic_equalizer::set_gain: Gain value must be >= 0"); d_mu = mu; } }; #endif