/* -*- c++ -*- */ /* * Copyright 2006,2010,2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #define M_TWOPI (2*M_PI) digital_costas_loop_cc_sptr digital_make_costas_loop_cc (float damping, float nat_freq, int order ) throw (std::invalid_argument) { return gnuradio::get_initial_sptr(new digital_costas_loop_cc (damping, nat_freq, order)); } digital_costas_loop_cc::digital_costas_loop_cc (float damping, float nat_freq, int order ) throw (std::invalid_argument) : gr_sync_block ("costas_loop_cc", gr_make_io_signature (1, 1, sizeof (gr_complex)), gr_make_io_signature2 (1, 2, sizeof (gr_complex), sizeof(float))), d_max_freq(1.0), d_min_freq(-1.0), d_phase(0), d_freq(0.0), d_nat_freq(nat_freq), d_damping(damping), d_order(order), d_phase_detector(NULL) { // initialize gains from the natural freq and damping factors update_gains(); switch(d_order) { case 2: d_phase_detector = &digital_costas_loop_cc::phase_detector_2; break; case 4: d_phase_detector = &digital_costas_loop_cc::phase_detector_4; break; case 8: d_phase_detector = &digital_costas_loop_cc::phase_detector_8; break; default: throw std::invalid_argument("order must be 2, 4, or 8"); break; } } float digital_costas_loop_cc::phase_detector_8(gr_complex sample) const { /* This technique splits the 8PSK constellation into 2 squashed QPSK constellations, one when I is larger than Q and one where Q is larger than I. The error is then calculated proportionally to these squashed constellations by the const K = sqrt(2)-1. The signal magnitude must be > 1 or K will incorrectly bias the error value. Ref: Z. Huang, Z. Yi, M. Zhang, K. Wang, "8PSK demodulation for new generation DVB-S2", IEEE Proc. Int. Conf. Communications, Circuits and Systems, Vol. 2, pp. 1447 - 1450, 2004. */ float K = (sqrt(2.0) - 1); if(fabsf(sample.real()) >= fabsf(sample.imag())) { return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() - (sample.imag()>0 ? 1.0 : -1.0) * sample.real() * K); } else { return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() * K - (sample.imag()>0 ? 1.0 : -1.0) * sample.real()); } } float digital_costas_loop_cc::phase_detector_4(gr_complex sample) const { return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() - (sample.imag()>0 ? 1.0 : -1.0) * sample.real()); } float digital_costas_loop_cc::phase_detector_2(gr_complex sample) const { return (sample.real()*sample.imag()); } void digital_costas_loop_cc::set_natural_freq(float w) { d_nat_freq = w; update_gains(); } void digital_costas_loop_cc::set_damping_factor(float eta) { d_damping = eta; update_gains(); } void digital_costas_loop_cc::update_gains() { d_beta = d_nat_freq*d_nat_freq; d_alpha = 2*d_damping*d_nat_freq; } int digital_costas_loop_cc::work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *iptr = (gr_complex *) input_items[0]; gr_complex *optr = (gr_complex *) output_items[0]; float *foptr = (float *) output_items[1]; bool write_foptr = output_items.size() >= 2; float error; gr_complex nco_out; if (write_foptr) { for (int i = 0; i < noutput_items; i++){ nco_out = gr_expj(-d_phase); optr[i] = iptr[i] * nco_out; error = (*this.*d_phase_detector)(optr[i]); error = gr_branchless_clip(error, 1.0); d_freq = d_freq + d_beta * error; d_phase = d_phase + d_freq + d_alpha * error; while(d_phase>M_TWOPI) d_phase -= M_TWOPI; while(d_phase<-M_TWOPI) d_phase += M_TWOPI; if (d_freq > d_max_freq) d_freq = d_min_freq; else if (d_freq < d_min_freq) d_freq = d_max_freq; foptr[i] = d_freq; } } else { for (int i = 0; i < noutput_items; i++){ nco_out = gr_expj(-d_phase); optr[i] = iptr[i] * nco_out; error = (*this.*d_phase_detector)(optr[i]); error = gr_branchless_clip(error, 1.0); d_freq = d_freq + d_beta * error; d_phase = d_phase + d_freq + d_alpha * error; while(d_phase>M_TWOPI) d_phase -= M_TWOPI; while(d_phase<-M_TWOPI) d_phase += M_TWOPI; if (d_freq > d_max_freq) d_freq = d_min_freq; else if (d_freq < d_min_freq) d_freq = d_max_freq; } } return noutput_items; }