/* -*- c++ -*- */ /* * Copyright 2004,2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_DIGITAL_CLOCK_RECOVERY_MM_FF_H #define INCLUDED_DIGITAL_CLOCK_RECOVERY_MM_FF_H #include #include #include class gri_mmse_fir_interpolator; class digital_clock_recovery_mm_ff; typedef boost::shared_ptr digital_clock_recovery_mm_ff_sptr; // public constructor digital_clock_recovery_mm_ff_sptr digital_make_clock_recovery_mm_ff (float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit=0.001); /*! * \brief Mueller and Müller (M&M) based clock recovery block with float input, float output. * \ingroup sync_blk * * This implements the Mueller and Müller (M&M) discrete-time error-tracking synchronizer. * * See "Digital Communication Receivers: Synchronization, Channel * Estimation and Signal Processing" by Heinrich Meyr, Marc Moeneclaey, & Stefan Fechtel. * ISBN 0-471-50275-8. */ class digital_clock_recovery_mm_ff : public gr_block { public: ~digital_clock_recovery_mm_ff (); void forecast(int noutput_items, gr_vector_int &ninput_items_required); int general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); float mu() const { return d_mu;} float omega() const { return d_omega;} float gain_mu() const { return d_gain_mu;} float gain_omega() const { return d_gain_omega;} void set_gain_mu (float gain_mu) { d_gain_mu = gain_mu; } void set_gain_omega (float gain_omega) { d_gain_omega = gain_omega; } void set_mu (float mu) { d_mu = mu; } void set_omega (float omega){ d_omega = omega; d_min_omega = omega*(1.0 - d_omega_relative_limit); d_max_omega = omega*(1.0 + d_omega_relative_limit); d_omega_mid = 0.5*(d_min_omega+d_max_omega); } protected: digital_clock_recovery_mm_ff (float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit); private: float d_mu; // fractional sample position [0.0, 1.0] float d_omega; // nominal frequency float d_min_omega; // minimum allowed omega float d_omega_mid; // average omega float d_max_omega; // maximum allowed omega float d_gain_omega; // gain for adjusting omega float d_gain_mu; // gain for adjusting mu float d_last_sample; gri_mmse_fir_interpolator *d_interp; FILE *d_logfile; float d_omega_relative_limit; // used to compute min and max omega friend digital_clock_recovery_mm_ff_sptr digital_make_clock_recovery_mm_ff (float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit); }; #endif