/* -*- c++ -*- */ /* * Copyright 2005,2006,2010,2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include // Public constructor static const int FUDGE = 16; digital_clock_recovery_mm_cc_sptr digital_make_clock_recovery_mm_cc(float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit) { return gnuradio::get_initial_sptr(new digital_clock_recovery_mm_cc (omega, gain_omega, mu, gain_mu, omega_relative_limit)); } digital_clock_recovery_mm_cc::digital_clock_recovery_mm_cc (float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit) : gr_block ("clock_recovery_mm_cc", gr_make_io_signature (1, 1, sizeof (gr_complex)), gr_make_io_signature (1, 2, sizeof (gr_complex))), d_mu (mu), d_omega(omega), d_gain_omega(gain_omega), d_omega_relative_limit(omega_relative_limit), d_gain_mu(gain_mu), d_last_sample(0), d_interp(new gri_mmse_fir_interpolator_cc()), d_verbose(gr_prefs::singleton()->get_bool("clock_recovery_mm_cc", "verbose", false)), d_p_2T(0), d_p_1T(0), d_p_0T(0), d_c_2T(0), d_c_1T(0), d_c_0T(0) { if (omega <= 0.0) throw std::out_of_range ("clock rate must be > 0"); if (gain_mu < 0 || gain_omega < 0) throw std::out_of_range ("Gains must be non-negative"); set_omega(omega); // also sets min and max omega set_relative_rate (1.0 / omega); set_history(3); // ensure 2 extra input sample is available } digital_clock_recovery_mm_cc::~digital_clock_recovery_mm_cc () { delete d_interp; } void digital_clock_recovery_mm_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) { unsigned ninputs = ninput_items_required.size(); for (unsigned i=0; i < ninputs; i++) ninput_items_required[i] = (int) ceil((noutput_items * d_omega) + d_interp->ntaps()) + FUDGE; } gr_complex digital_clock_recovery_mm_cc::slicer_0deg (gr_complex sample) { float real=0, imag=0; if(sample.real() > 0) real = 1; if(sample.imag() > 0) imag = 1; return gr_complex(real,imag); } gr_complex digital_clock_recovery_mm_cc::slicer_45deg (gr_complex sample) { float real= -1, imag = -1; if(sample.real() > 0) real=1; if(sample.imag() > 0) imag = 1; return gr_complex(real,imag); } /* Modified Mueller and Muller clock recovery circuit Based: G. R. Danesfahani, T.G. Jeans, "Optimisation of modified Mueller and Muller algorithm," Electronics Letters, Vol. 31, no. 13, 22 June 1995, pp. 1032 - 1033. */ int digital_clock_recovery_mm_cc::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; gr_complex *foptr = (gr_complex *) output_items[1]; bool write_foptr = output_items.size() >= 2; int ii = 0; // input index int oo = 0; // output index int ni = ninput_items[0] - d_interp->ntaps() - FUDGE; // don't use more input than this assert(d_mu >= 0.0); assert(d_mu <= 1.0); float mm_val=0; gr_complex u, x, y; // This loop writes the error to the second output, if it exists if (write_foptr) { while(oo < noutput_items && ii < ni) { d_p_2T = d_p_1T; d_p_1T = d_p_0T; d_p_0T = d_interp->interpolate (&in[ii], d_mu); d_c_2T = d_c_1T; d_c_1T = d_c_0T; d_c_0T = slicer_0deg(d_p_0T); x = (d_c_0T - d_c_2T) * conj(d_p_1T); y = (d_p_0T - d_p_2T) * conj(d_c_1T); u = y - x; mm_val = u.real(); out[oo++] = d_p_0T; // limit mm_val mm_val = gr_branchless_clip(mm_val,1.0); d_omega = d_omega + d_gain_omega * mm_val; d_omega = d_omega_mid + gr_branchless_clip(d_omega-d_omega_mid, d_omega_relative_limit); // make sure we don't walk away d_mu = d_mu + d_omega + d_gain_mu * mm_val; ii += (int)floor(d_mu); d_mu -= floor(d_mu); // write the error signal to the second output foptr[oo-1] = gr_complex(d_mu,0); if (ii < 0) // clamp it. This should only happen with bogus input ii = 0; } } // This loop does not write to the second output (ugly, but faster) else { while(oo < noutput_items && ii < ni) { d_p_2T = d_p_1T; d_p_1T = d_p_0T; d_p_0T = d_interp->interpolate (&in[ii], d_mu); d_c_2T = d_c_1T; d_c_1T = d_c_0T; d_c_0T = slicer_0deg(d_p_0T); x = (d_c_0T - d_c_2T) * conj(d_p_1T); y = (d_p_0T - d_p_2T) * conj(d_c_1T); u = y - x; mm_val = u.real(); out[oo++] = d_p_0T; // limit mm_val mm_val = gr_branchless_clip(mm_val,1.0); d_omega = d_omega + d_gain_omega * mm_val; d_omega = d_omega_mid + gr_branchless_clip(d_omega-d_omega_mid, d_omega_relative_limit); // make sure we don't walk away d_mu = d_mu + d_omega + d_gain_mu * mm_val; ii += (int)floor(d_mu); d_mu -= floor(d_mu); if(d_verbose) { printf("%f\t%f\n", d_omega, d_mu); } if (ii < 0) // clamp it. This should only happen with bogus input ii = 0; } } if (ii > 0){ if (ii > ninput_items[0]){ fprintf(stderr, "gr_clock_recovery_mm_cc: ii > ninput_items[0] (%d > %d)\n", ii, ninput_items[0]); assert(0); } consume_each (ii); } return oo; }