/* -*- c++ -*- */ /* * Copyright 2004,2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_DIGITAL_CLOCK_RECOVERY_MM_CC_H #define INCLUDED_DIGITAL_CLOCK_RECOVERY_MM_CC_H #include #include #include class gri_mmse_fir_interpolator_cc; class digital_clock_recovery_mm_cc; typedef boost::shared_ptr digital_clock_recovery_mm_cc_sptr; // public constructor digital_clock_recovery_mm_cc_sptr digital_make_clock_recovery_mm_cc (float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit=0.001); /*! * \brief Mueller and Müller (M&M) based clock recovery block with complex input, complex output. * \ingroup sync_blk * \ingroup digital * * This implements the Mueller and Müller (M&M) discrete-time error-tracking synchronizer. * The complex version here is based on: * Modified Mueller and Muller clock recovery circuit * Based: * G. R. Danesfahani, T.G. Jeans, "Optimisation of modified Mueller and Muller * algorithm," Electronics Letters, Vol. 31, no. 13, 22 June 1995, pp. 1032 - 1033. */ class digital_clock_recovery_mm_cc : public gr_block { public: ~digital_clock_recovery_mm_cc (); void forecast(int noutput_items, gr_vector_int &ninput_items_required); int general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); float mu() const { return d_mu;} float omega() const { return d_omega;} float gain_mu() const { return d_gain_mu;} float gain_omega() const { return d_gain_omega;} void set_verbose (bool verbose) { d_verbose = verbose; } void set_gain_mu (float gain_mu) { d_gain_mu = gain_mu; } void set_gain_omega (float gain_omega) { d_gain_omega = gain_omega; } void set_mu (float mu) { d_mu = mu; } void set_omega (float omega) { d_omega = omega; d_min_omega = omega*(1.0 - d_omega_relative_limit); d_max_omega = omega*(1.0 + d_omega_relative_limit); d_omega_mid = 0.5*(d_min_omega+d_max_omega); } protected: digital_clock_recovery_mm_cc (float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limi); private: float d_mu; float d_omega; float d_gain_omega; float d_min_omega; // minimum allowed omega float d_max_omega; // maximum allowed omeg float d_omega_relative_limit; // used to compute min and max omega float d_omega_mid; float d_gain_mu; gr_complex d_last_sample; gri_mmse_fir_interpolator_cc *d_interp; bool d_verbose; gr_complex d_p_2T; gr_complex d_p_1T; gr_complex d_p_0T; gr_complex d_c_2T; gr_complex d_c_1T; gr_complex d_c_0T; gr_complex slicer_0deg (gr_complex sample); gr_complex slicer_45deg (gr_complex sample); friend digital_clock_recovery_mm_cc_sptr digital_make_clock_recovery_mm_cc (float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit); }; #endif