#!/usr/bin/env python import sys try: import scipy from scipy import stats except ImportError: print "Error: Program requires scipy (www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires Matplotlib (matplotlib.sourceforge.net)." sys.exit(1) from gnuradio import gr, digital from optparse import OptionParser from gnuradio.eng_option import eng_option ''' This example program uses Python and GNU Radio to calculate SNR of a noise BPSK signal to compare them. For an explination of the online algorithms, see: http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Higher-order_statistics ''' def online_skewness(data, alpha): n = 0 mean = 0 M2 = 0 M3 = 0 d_M3 = 0 for n in xrange(len(data)): delta = data[n] - mean delta_n = delta / (n+1) term1 = delta * delta_n * (n) mean = mean + delta_n M3 = term1 * delta_n * (n - 1) - 3 * delta_n * M2 M2 = M2 + term1 d_M3 = (0.001)*M3 + (1-0.001)*d_M3; return d_M3 def snr_est_simple(signal): y1 = scipy.mean(abs(signal)) y2 = scipy.real(scipy.mean(signal**2)) y3 = (y1*y1 - y2) snr_rat = y1*y1/y3 return 10.0*scipy.log10(snr_rat), snr_rat def snr_est_skew(signal): y1 = scipy.mean(abs(signal)) y2 = scipy.mean(scipy.real(signal**2)) y3 = (y1*y1 - y2) y4 = online_skewness(abs(signal.real), 0.001) skw = y4*y4 / (y2*y2*y2); snr_rat = y1*y1 / (y3 + skw*y1*y1) return 10.0*scipy.log10(snr_rat), snr_rat def snr_est_m2m4(signal): M2 = scipy.mean(abs(signal)**2) M4 = scipy.mean(abs(signal)**4) snr_rat = 2*scipy.sqrt(2*M2*M2 - M4) / (M2 - scipy.sqrt(2*M2*M2 - M4)) return 10.0*scipy.log10(snr_rat), snr_rat def snr_est_svr(signal): N = len(signal) ssum = 0 msum = 0 for i in xrange(1, N): ssum += (abs(signal[i])**2)*(abs(signal[i-1])**2) msum += (abs(signal[i])**4) savg = (1.0/(float(N)-1.0))*ssum mavg = (1.0/(float(N)-1.0))*msum beta = savg / (mavg - savg) snr_rat = 2*((beta - 1) + scipy.sqrt(beta*(beta-1))) return 10.0*scipy.log10(snr_rat), snr_rat def main(): gr_estimators = {"simple": digital.SNR_EST_SIMPLE, "skew": digital.SNR_EST_SKEW, "m2m4": digital.SNR_EST_M2M4, "svr": digital.SNR_EST_SVR} py_estimators = {"simple": snr_est_simple, "skew": snr_est_skew, "m2m4": snr_est_m2m4, "svr": snr_est_svr} parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Set the number of samples to process [default=%default]") parser.add_option("", "--snr-min", type="float", default=-5, help="Minimum SNR [default=%default]") parser.add_option("", "--snr-max", type="float", default=20, help="Maximum SNR [default=%default]") parser.add_option("", "--snr-step", type="float", default=0.5, help="SNR step amount [default=%default]") parser.add_option("-t", "--type", type="choice", choices=gr_estimators.keys(), default="simple", help="Estimator type {0} [default=%default]".format( gr_estimators.keys())) (options, args) = parser.parse_args () N = options.nsamples xx = scipy.random.randn(N) xy = scipy.random.randn(N) bits = 2*scipy.complex64(scipy.random.randint(0, 2, N)) - 1 snr_known = list() snr_python = list() snr_gr = list() # when to issue an SNR tag; can be ignored in this example. ntag = 10000 n_cpx = xx + 1j*xy py_est = py_estimators[options.type] gr_est = gr_estimators[options.type] SNR_min = options.snr_min SNR_max = options.snr_max SNR_step = options.snr_step SNR_dB = scipy.arange(SNR_min, SNR_max+SNR_step, SNR_step) for snr in SNR_dB: SNR = 10.0**(snr/10.0) scale = scipy.sqrt(SNR) yy = bits + n_cpx/scale print "SNR: ", snr Sknown = scipy.mean(yy**2) Nknown = scipy.var(n_cpx/scale)/2 snr0 = Sknown/Nknown snr0dB = 10.0*scipy.log10(snr0) snr_known.append(snr0dB) snrdB, snr = py_est(yy) snr_python.append(snrdB) gr_src = gr.vector_source_c(bits.tolist(), False) gr_snr = digital.mpsk_snr_est_cc(gr_est, ntag, 0.001) gr_chn = gr.channel_model(1.0/scale) gr_snk = gr.null_sink(gr.sizeof_gr_complex) tb = gr.top_block() tb.connect(gr_src, gr_chn, gr_snr, gr_snk) tb.run() snr_gr.append(gr_snr.snr()) f1 = pylab.figure(1) s1 = f1.add_subplot(1,1,1) s1.plot(SNR_dB, snr_known, "k-o", linewidth=2, label="Known") s1.plot(SNR_dB, snr_python, "b-o", linewidth=2, label="Python") s1.plot(SNR_dB, snr_gr, "g-o", linewidth=2, label="GNU Radio") s1.grid(True) s1.set_title('SNR Estimators') s1.set_xlabel('SNR (dB)') s1.set_ylabel('Estimated SNR') s1.legend() pylab.show() if __name__ == "__main__": main()