/* -*- c++ -*- */ /* * Copyright 2007,2010 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include /* * Create a new instance of cvsd_decode_bs and return * a boost shared_ptr. This is effectively the public constructor. */ cvsd_decode_bs_sptr cvsd_make_decode_bs (short min_step, short max_step, double step_decay, double accum_decay, int K, int J, short pos_accum_max, short neg_accum_max) { return gnuradio::get_initial_sptr(new cvsd_decode_bs (min_step, max_step, step_decay, accum_decay, K, J, pos_accum_max, neg_accum_max)); } cvsd_decode_bs::cvsd_decode_bs (short min_step, short max_step, double step_decay, double accum_decay, int K, int J, short pos_accum_max, short neg_accum_max) : gr_sync_interpolator ("cvsd_decode_bs", gr_make_io_signature (1, 1, sizeof (unsigned char)), gr_make_io_signature (1, 1, sizeof (short)), 8), d_min_step (min_step), d_max_step(max_step), d_step_decay(step_decay), d_accum_decay(accum_decay), d_K(K), d_J(J), d_pos_accum_max(pos_accum_max), d_neg_accum_max(neg_accum_max), d_accum(0), d_loop_counter(1), d_runner(0), d_runner_mask(0), d_stepsize(min_step) { assert(d_K <= 32); assert(d_J <= d_K); } cvsd_decode_bs::~cvsd_decode_bs () { // nothing else required in this example } unsigned char cvsd_decode_bs::cvsd_bitwise_sum (unsigned int input) { unsigned int temp=input; unsigned char bits=0; while(temp) { temp=temp&(temp-1); bits++; } return bits; } int cvsd_decode_bs::cvsd_round (double input) { double temp; temp=input+0.5; temp=floor(temp); return (int)temp; } unsigned int cvsd_decode_bs::cvsd_pow (short radix, short power) { double d_radix = (double) radix; int i_power = (int) power; double output; output=pow(d_radix,i_power); return ( (unsigned int) cvsd_round(output)); } int cvsd_decode_bs::work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const unsigned char *in = (const unsigned char *) input_items[0]; short *out = (short *) output_items[0]; int i=0; short output_short=0; // 2 bytes 0 .. 65,535 unsigned char bit_count=0; // 1 byte, 0 .. 255 unsigned int mask=0; // 4 bytes, 0 .. 4,294,967,295 unsigned char input_byte=0; // 1 bytes unsigned char input_bit=0; // 1 byte, 0 .. 255 // Loop through each input data point for(i = 0; i < noutput_items/8.0; i++) { input_byte = in[i]; // Initiliaze bit counter bit_count=0; while(bit_count<8) { // Compute the Appropriate Mask mask=cvsd_pow(2,7-bit_count); // Pull off the corresponding bit input_bit = input_byte & mask; // Update the bit counter bit_count++; // Update runner with the next input bit // Runner is a shift-register; shift left, add on newest output bit d_runner = (d_runner<<1) | ((unsigned int) input_bit); // Run this only if you have >= J bits in your shift register if (d_loop_counter>=d_J) { // Update Step Size d_runner_mask=(cvsd_pow(2,d_J)-1); if ((cvsd_bitwise_sum(d_runner & d_runner_mask)>=d_J)||(cvsd_bitwise_sum((~d_runner) & d_runner_mask)>=d_J)) { // Runs of 1s and 0s d_stepsize = std::min( (short) (d_stepsize + d_min_step), d_max_step); } else { // No runs of 1s and 0s d_stepsize = std::max( (short) cvsd_round(d_stepsize*d_step_decay), d_min_step); } } // Update Accum (i.e. the reference value) if (input_bit) { d_accum=d_accum+d_stepsize; } else { d_accum=d_accum-d_stepsize; } // Multiply by Accum_Decay d_accum=(cvsd_round(d_accum*d_accum_decay)); // Check for overflow if (d_accum >=((int) d_pos_accum_max)) { d_accum=(int)d_pos_accum_max; } else if (d_accum <=((int) d_neg_accum_max)) { d_accum=(int)d_neg_accum_max; } // Find the output short to write to the file output_short=((short) d_accum); if (d_loop_counter <= d_K) { d_loop_counter++; } *(out++) = output_short; } // while () } // for() return noutput_items; }