/* -*- c++ -*- */ /* * Copyright 2006 Free Software Foundation, Inc. * * This file is part of GNU Radio. * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #define _USE_OMNI_THREADS_ #include #include #include #include #define _OSX_AU_DEBUG_ 0 #define _OSX_DO_LISTENERS_ 0 void PrintStreamDesc (AudioStreamBasicDescription *inDesc) { if (inDesc == NULL) { std::cerr << "PrintStreamDesc: Can't print a NULL desc!" << std::endl; return; } std::cerr << " Sample Rate : " << inDesc->mSampleRate << std::endl; char format_id[4]; strncpy (format_id, (char*)(&inDesc->mFormatID), 4); std::cerr << " Format ID : " << format_id << std::endl; std::cerr << " Format Flags : " << inDesc->mFormatFlags << std::endl; std::cerr << " Bytes per Packet : " << inDesc->mBytesPerPacket << std::endl; std::cerr << " Frames per Packet : " << inDesc->mFramesPerPacket << std::endl; std::cerr << " Bytes per Frame : " << inDesc->mBytesPerFrame << std::endl; std::cerr << " Channels per Frame : " << inDesc->mChannelsPerFrame << std::endl; std::cerr << " Bits per Channel : " << inDesc->mBitsPerChannel << std::endl; } // FIXME these should query some kind of user preference audio_osx_source::audio_osx_source (int sample_rate, const std::string device_name, bool do_block, int channel_config, int max_sample_count) : gr_sync_block ("audio_osx_source", gr_make_io_signature (0, 0, 0), gr_make_io_signature (0, 0, 0)), d_deviceSampleRate (0.0), d_outputSampleRate (0.0), d_channel_config (0), d_inputBufferSizeFrames (0), d_inputBufferSizeBytes (0), d_outputBufferSizeFrames (0), d_outputBufferSizeBytes (0), d_deviceBufferSizeFrames (0), d_deviceBufferSizeBytes (0), d_leadSizeFrames (0), d_leadSizeBytes (0), d_trailSizeFrames (0), d_trailSizeBytes (0), d_extraBufferSizeFrames (0), d_extraBufferSizeBytes (0), d_queueSampleCount (0), d_max_sample_count (0), d_n_AvailableInputFrames (0), d_n_ActualInputFrames (0), d_n_user_channels (0), d_n_max_channels (0), d_n_deviceChannels (0), d_do_block (do_block), d_passThrough (false), d_internal (0), d_cond_data (0), d_buffers (0), d_InputAU (0), d_InputBuffer (0), d_OutputBuffer (0), d_AudioConverter (0) { if (sample_rate <= 0) { std::cerr << "Invalid Sample Rate: " << sample_rate << std::endl; throw std::invalid_argument ("audio_osx_source::audio_osx_source"); } else d_outputSampleRate = (Float64) sample_rate; if (channel_config <= 0 & channel_config != -1) { std::cerr << "Invalid Channel Config: " << channel_config << std::endl; throw std::invalid_argument ("audio_osx_source::audio_osx_source"); } else if (channel_config == -1) { // no user input; try "device name" instead int l_n_channels = (int) strtol (device_name.data(), (char **)NULL, 10); if (l_n_channels == 0 & errno) { std::cerr << "Error Converting Device Name: " << errno << std::endl; throw std::invalid_argument ("audio_osx_source::audio_osx_source"); } if (l_n_channels <= 0) channel_config = 2; else channel_config = l_n_channels; } d_channel_config = channel_config; // check that the max # of samples to store is valid if (max_sample_count == -1) max_sample_count = sample_rate; else if (max_sample_count <= 0) { std::cerr << "Invalid Max Sample Count: " << max_sample_count << std::endl; throw std::invalid_argument ("audio_osx_source::audio_osx_source"); } d_max_sample_count = max_sample_count; #if _OSX_AU_DEBUG_ std::cerr << "source(): max # samples = " << d_max_sample_count << std::endl; #endif OSStatus err = noErr; // create the default AudioUnit for input // Open the default input unit #ifndef GR_USE_OLD_AUDIO_UNIT AudioComponentDescription InputDesc; #else ComponentDescription InputDesc; #endif InputDesc.componentType = kAudioUnitType_Output; InputDesc.componentSubType = kAudioUnitSubType_HALOutput; InputDesc.componentManufacturer = kAudioUnitManufacturer_Apple; InputDesc.componentFlags = 0; InputDesc.componentFlagsMask = 0; #ifndef GR_USE_OLD_AUDIO_UNIT AudioComponent comp = AudioComponentFindNext (NULL, &InputDesc); #else Component comp = FindNextComponent (NULL, &InputDesc); #endif if (comp == NULL) { #ifndef GR_USE_OLD_AUDIO_UNIT std::cerr << "AudioComponentFindNext Error" << std::endl; #else std::cerr << "FindNextComponent Error" << std::endl; #endif throw std::runtime_error ("audio_osx_source::audio_osx_source"); } #ifndef GR_USE_OLD_AUDIO_UNIT err = AudioComponentInstanceNew (comp, &d_InputAU); CheckErrorAndThrow (err, "AudioComponentInstanceNew", "audio_osx_source::audio_osx_source"); #else err = OpenAComponent (comp, &d_InputAU); CheckErrorAndThrow (err, "OpenAComponent", "audio_osx_source::audio_osx_source"); #endif UInt32 enableIO; // must enable the AUHAL for input and disable output // before setting the AUHAL's current device // Enable input on the AUHAL enableIO = 1; err = AudioUnitSetProperty (d_InputAU, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, 1, // input element &enableIO, sizeof (UInt32)); CheckErrorAndThrow (err, "AudioUnitSetProperty Input Enable", "audio_osx_source::audio_osx_source"); // Disable output on the AUHAL enableIO = 0; err = AudioUnitSetProperty (d_InputAU, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, 0, // output element &enableIO, sizeof (UInt32)); CheckErrorAndThrow (err, "AudioUnitSetProperty Output Disable", "audio_osx_source::audio_osx_source"); // set the default input device for our input AU SetDefaultInputDeviceAsCurrent (); #if _OSX_DO_LISTENERS_ // set up a listener if default hardware input device changes err = AudioHardwareAddPropertyListener (kAudioHardwarePropertyDefaultInputDevice, (AudioHardwarePropertyListenerProc) HardwareListener, this); CheckErrorAndThrow (err, "AudioHardwareAddPropertyListener", "audio_osx_source::audio_osx_source"); // Add a listener for any changes in the input AU's output stream // the function "UnitListener" will be called if the stream format // changes for whatever reason err = AudioUnitAddPropertyListener (d_InputAU, kAudioUnitProperty_StreamFormat, (AudioUnitPropertyListenerProc) UnitListener, this); CheckErrorAndThrow (err, "Adding Unit Property Listener", "audio_osx_source::audio_osx_source"); #endif // Now find out if it actually can do input. UInt32 hasInput = 0; UInt32 dataSize = sizeof (hasInput); err = AudioUnitGetProperty (d_InputAU, kAudioOutputUnitProperty_HasIO, kAudioUnitScope_Input, 1, &hasInput, &dataSize); CheckErrorAndThrow (err, "AudioUnitGetProperty HasIO", "audio_osx_source::audio_osx_source"); if (hasInput == 0) { std::cerr << "Selected Audio Device does not support Input." << std::endl; throw std::runtime_error ("audio_osx_source::audio_osx_source"); } // Set up a callback function to retrieve input from the Audio Device AURenderCallbackStruct AUCallBack; AUCallBack.inputProc = (AURenderCallback)(audio_osx_source::AUInputCallback); AUCallBack.inputProcRefCon = this; err = AudioUnitSetProperty (d_InputAU, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, 0, &AUCallBack, sizeof (AURenderCallbackStruct)); CheckErrorAndThrow (err, "AudioUnitSetProperty Input Callback", "audio_osx_source::audio_osx_source"); UInt32 propertySize; AudioStreamBasicDescription asbd_device, asbd_client, asbd_user; // asbd_device: ASBD of the device that is creating the input data stream // asbd_client: ASBD of the client size (output) of the hardware device // asbd_user: ASBD of the user's arguments // Get the Stream Format (device side) propertySize = sizeof (asbd_device); err = AudioUnitGetProperty (d_InputAU, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 1, &asbd_device, &propertySize); CheckErrorAndThrow (err, "AudioUnitGetProperty Device Input Stream Format", "audio_osx_source::audio_osx_source"); #if _OSX_AU_DEBUG_ std::cerr << std::endl << "---- Device Stream Format ----" << std::endl; PrintStreamDesc (&asbd_device); #endif // Get the Stream Format (client side) propertySize = sizeof (asbd_client); err = AudioUnitGetProperty (d_InputAU, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 1, &asbd_client, &propertySize); CheckErrorAndThrow (err, "AudioUnitGetProperty Device Ouput Stream Format", "audio_osx_source::audio_osx_source"); #if _OSX_AU_DEBUG_ std::cerr << std::endl << "---- Client Stream Format ----" << std::endl; PrintStreamDesc (&asbd_client); #endif // Set the format of all the AUs to the input/output devices channel count // get the max number of input (& thus output) channels supported by // this device d_n_max_channels = asbd_client.mChannelsPerFrame; // create the output io signature; // no input siganture to set (source is hardware) set_output_signature (gr_make_io_signature (1, d_n_max_channels, sizeof (float))); // allocate the output circular buffer(s), one per channel d_buffers = (circular_buffer**) new circular_buffer* [d_n_max_channels]; UInt32 n_alloc = (UInt32) ceil ((double) d_max_sample_count); for (UInt32 n = 0; n < d_n_max_channels; n++) { d_buffers[n] = new circular_buffer (n_alloc, false, false); } d_deviceSampleRate = asbd_device.mSampleRate; d_n_deviceChannels = asbd_device.mChannelsPerFrame; // create an ASBD for the user's wants asbd_user.mSampleRate = d_outputSampleRate; asbd_user.mFormatID = kAudioFormatLinearPCM; asbd_user.mFormatFlags = (kLinearPCMFormatFlagIsFloat | GR_PCM_ENDIANNESS | kLinearPCMFormatFlagIsPacked | kAudioFormatFlagIsNonInterleaved); asbd_user.mBytesPerPacket = 4; asbd_user.mFramesPerPacket = 1; asbd_user.mBytesPerFrame = 4; asbd_user.mChannelsPerFrame = d_n_max_channels; asbd_user.mBitsPerChannel = 32; if (d_deviceSampleRate == d_outputSampleRate) { // no need to do conversion if asbd_client matches user wants d_passThrough = true; d_leadSizeFrames = d_trailSizeFrames = 0L; } else { d_passThrough = false; // Create the audio converter err = AudioConverterNew (&asbd_client, &asbd_user, &d_AudioConverter); CheckErrorAndThrow (err, "AudioConverterNew", "audio_osx_source::audio_osx_source"); // Set the audio converter sample rate quality to "max" ... // requires more samples, but should sound nicer UInt32 ACQuality = kAudioConverterQuality_Max; propertySize = sizeof (ACQuality); err = AudioConverterSetProperty (d_AudioConverter, kAudioConverterSampleRateConverterQuality, propertySize, &ACQuality); CheckErrorAndThrow (err, "AudioConverterSetProperty " "SampleRateConverterQuality", "audio_osx_source::audio_osx_source"); // set the audio converter's prime method to "pre", // which uses both leading and trailing frames // from the "current input". All of this is handled // internally by the AudioConverter; we just supply // the frames for conversion. // UInt32 ACPrimeMethod = kConverterPrimeMethod_None; UInt32 ACPrimeMethod = kConverterPrimeMethod_Pre; propertySize = sizeof (ACPrimeMethod); err = AudioConverterSetProperty (d_AudioConverter, kAudioConverterPrimeMethod, propertySize, &ACPrimeMethod); CheckErrorAndThrow (err, "AudioConverterSetProperty PrimeMethod", "audio_osx_source::audio_osx_source"); // Get the size of the I/O buffer(s) to allow for pre-allocated buffers // lead frame info (trail frame info is ignored) AudioConverterPrimeInfo ACPrimeInfo = {0, 0}; propertySize = sizeof (ACPrimeInfo); err = AudioConverterGetProperty (d_AudioConverter, kAudioConverterPrimeInfo, &propertySize, &ACPrimeInfo); CheckErrorAndThrow (err, "AudioConverterGetProperty PrimeInfo", "audio_osx_source::audio_osx_source"); switch (ACPrimeMethod) { case (kConverterPrimeMethod_None): d_leadSizeFrames = d_trailSizeFrames = 0L; break; case (kConverterPrimeMethod_Normal): d_leadSizeFrames = 0L; d_trailSizeFrames = ACPrimeInfo.trailingFrames; break; default: d_leadSizeFrames = ACPrimeInfo.leadingFrames; d_trailSizeFrames = ACPrimeInfo.trailingFrames; } } d_leadSizeBytes = d_leadSizeFrames * sizeof (Float32); d_trailSizeBytes = d_trailSizeFrames * sizeof (Float32); propertySize = sizeof (d_deviceBufferSizeFrames); err = AudioUnitGetProperty (d_InputAU, kAudioDevicePropertyBufferFrameSize, kAudioUnitScope_Global, 0, &d_deviceBufferSizeFrames, &propertySize); CheckErrorAndThrow (err, "AudioUnitGetProperty Buffer Frame Size", "audio_osx_source::audio_osx_source"); d_deviceBufferSizeBytes = d_deviceBufferSizeFrames * sizeof (Float32); d_inputBufferSizeBytes = d_deviceBufferSizeBytes + d_leadSizeBytes; d_inputBufferSizeFrames = d_deviceBufferSizeFrames + d_leadSizeFrames; // outBufSizeBytes = floor (inBufSizeBytes * rate_out / rate_in) // since this is rarely exact, we need another buffer to hold // "extra" samples not processed at any given sampling period // this buffer must be at least 4 floats in size, but generally // follows the rule that // extraBufSize = ceil (rate_in / rate_out)*sizeof(float) d_extraBufferSizeFrames = ((UInt32) ceil (d_deviceSampleRate / d_outputSampleRate) * sizeof (float)); if (d_extraBufferSizeFrames < 4) d_extraBufferSizeFrames = 4; d_extraBufferSizeBytes = d_extraBufferSizeFrames * sizeof (float); d_outputBufferSizeFrames = (UInt32) ceil (((Float64) d_inputBufferSizeFrames) * d_outputSampleRate / d_deviceSampleRate); d_outputBufferSizeBytes = d_outputBufferSizeFrames * sizeof (float); d_inputBufferSizeFrames += d_extraBufferSizeFrames; // pre-alloc all buffers AllocAudioBufferList (&d_InputBuffer, d_n_deviceChannels, d_inputBufferSizeBytes); if (d_passThrough == false) { AllocAudioBufferList (&d_OutputBuffer, d_n_max_channels, d_outputBufferSizeBytes); } else { d_OutputBuffer = d_InputBuffer; } // create the stuff to regulate I/O d_cond_data = new mld_condition (); if (d_cond_data == NULL) CheckErrorAndThrow (errno, "new mld_condition (data)", "audio_osx_source::audio_osx_source"); d_internal = d_cond_data->mutex (); // initialize the AU for input err = AudioUnitInitialize (d_InputAU); CheckErrorAndThrow (err, "AudioUnitInitialize", "audio_osx_source::audio_osx_source"); #if _OSX_AU_DEBUG_ std::cerr << "audio_osx_source Parameters:" << std::endl; std::cerr << " Device Sample Rate is " << d_deviceSampleRate << std::endl; std::cerr << " User Sample Rate is " << d_outputSampleRate << std::endl; std::cerr << " Max Sample Count is " << d_max_sample_count << std::endl; std::cerr << " # Device Channels is " << d_n_deviceChannels << std::endl; std::cerr << " # Max Channels is " << d_n_max_channels << std::endl; std::cerr << " Device Buffer Size is Frames = " << d_deviceBufferSizeFrames << std::endl; std::cerr << " Lead Size is Frames = " << d_leadSizeFrames << std::endl; std::cerr << " Trail Size is Frames = " << d_trailSizeFrames << std::endl; std::cerr << " Input Buffer Size is Frames = " << d_inputBufferSizeFrames << std::endl; std::cerr << " Output Buffer Size is Frames = " << d_outputBufferSizeFrames << std::endl; #endif } void audio_osx_source::AllocAudioBufferList (AudioBufferList** t_ABL, UInt32 n_channels, UInt32 bufferSizeBytes) { FreeAudioBufferList (t_ABL); UInt32 propertySize = (offsetof (AudioBufferList, mBuffers[0]) + (sizeof (AudioBuffer) * n_channels)); *t_ABL = (AudioBufferList*) calloc (1, propertySize); (*t_ABL)->mNumberBuffers = n_channels; int counter = n_channels; while (--counter >= 0) { (*t_ABL)->mBuffers[counter].mNumberChannels = 1; (*t_ABL)->mBuffers[counter].mDataByteSize = bufferSizeBytes; (*t_ABL)->mBuffers[counter].mData = calloc (1, bufferSizeBytes); } } void audio_osx_source::FreeAudioBufferList (AudioBufferList** t_ABL) { // free pre-allocated audio buffer, if it exists if (*t_ABL != NULL) { int counter = (*t_ABL)->mNumberBuffers; while (--counter >= 0) free ((*t_ABL)->mBuffers[counter].mData); free (*t_ABL); (*t_ABL) = 0; } } bool audio_osx_source::IsRunning () { UInt32 AURunning = 0, AUSize = sizeof (UInt32); OSStatus err = AudioUnitGetProperty (d_InputAU, kAudioOutputUnitProperty_IsRunning, kAudioUnitScope_Global, 0, &AURunning, &AUSize); CheckErrorAndThrow (err, "AudioUnitGetProperty IsRunning", "audio_osx_source::IsRunning"); return (AURunning); } bool audio_osx_source::start () { if (! IsRunning ()) { OSStatus err = AudioOutputUnitStart (d_InputAU); CheckErrorAndThrow (err, "AudioOutputUnitStart", "audio_osx_source::start"); } return (true); } bool audio_osx_source::stop () { if (IsRunning ()) { OSStatus err = AudioOutputUnitStop (d_InputAU); CheckErrorAndThrow (err, "AudioOutputUnitStart", "audio_osx_source::stop"); for (UInt32 n = 0; n < d_n_user_channels; n++) { d_buffers[n]->abort (); } } return (true); } audio_osx_source::~audio_osx_source () { OSStatus err = noErr; // stop the AudioUnit stop(); #if _OSX_DO_LISTENERS_ // remove the listeners err = AudioUnitRemovePropertyListener (d_InputAU, kAudioUnitProperty_StreamFormat, (AudioUnitPropertyListenerProc) UnitListener); CheckError (err, "~audio_osx_source: AudioUnitRemovePropertyListener"); err = AudioHardwareRemovePropertyListener (kAudioHardwarePropertyDefaultInputDevice, (AudioHardwarePropertyListenerProc) HardwareListener); CheckError (err, "~audio_osx_source: AudioHardwareRemovePropertyListener"); #endif // free pre-allocated audio buffers FreeAudioBufferList (&d_InputBuffer); if (d_passThrough == false) { err = AudioConverterDispose (d_AudioConverter); CheckError (err, "~audio_osx_source: AudioConverterDispose"); FreeAudioBufferList (&d_OutputBuffer); } // remove the audio unit err = AudioUnitUninitialize (d_InputAU); CheckError (err, "~audio_osx_source: AudioUnitUninitialize"); #ifndef GR_USE_OLD_AUDIO_UNIT err = AudioComponentInstanceDispose (d_InputAU); CheckError (err, "~audio_osx_source: AudioComponentInstanceDispose"); #else err = CloseComponent (d_InputAU); CheckError (err, "~audio_osx_source: CloseComponent"); #endif // empty and delete the queues for (UInt32 n = 0; n < d_n_max_channels; n++) { delete d_buffers[n]; d_buffers[n] = 0; } delete [] d_buffers; d_buffers = 0; // close and delete the control stuff delete d_cond_data; } audio_osx_source_sptr audio_osx_make_source (int sampling_freq, const std::string device_name, bool do_block, int channel_config, int max_sample_count) { return audio_osx_source_sptr (new audio_osx_source (sampling_freq, device_name, do_block, channel_config, max_sample_count)); } bool audio_osx_source::check_topology (int ninputs, int noutputs) { // check # inputs to make sure it's valid if (ninputs != 0) { std::cerr << "audio_osx_source::check_topology(): number of input " << "streams provided (" << ninputs << ") should be 0." << std::endl; throw std::runtime_error ("audio_osx_source::check_topology()"); } // check # outputs to make sure it's valid if ((noutputs < 1) | (noutputs > (int) d_n_max_channels)) { std::cerr << "audio_osx_source::check_topology(): number of output " << "streams provided (" << noutputs << ") should be in [1," << d_n_max_channels << "] for the selected audio device." << std::endl; throw std::runtime_error ("audio_osx_source::check_topology()"); } // save the actual number of output (user) channels d_n_user_channels = noutputs; #if _OSX_AU_DEBUG_ std::cerr << "chk_topo: Actual # user output channels = " << noutputs << std::endl; #endif return (true); } int audio_osx_source::work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // acquire control to do processing here only d_internal->lock (); #if _OSX_AU_DEBUG_ std::cerr << "work1: SC = " << d_queueSampleCount << ", #OI = " << noutput_items << ", #Chan = " << output_items.size() << std::endl; #endif // set the actual # of output items to the 'desired' amount then // verify that data is available; if not enough data is available, // either wait until it is (is "do_block" is true), return (0) is no // data is available and "do_block" is false, or process the actual // amount of available data. UInt32 actual_noutput_items = noutput_items; if (d_queueSampleCount < actual_noutput_items) { if (d_queueSampleCount == 0) { // no data; do_block decides what to do if (d_do_block == true) { while (d_queueSampleCount == 0) { // release control so-as to allow data to be retrieved; // block until there is data to return d_cond_data->wait (); // the condition's signal() was called; acquire control to // keep thread safe } } else { // no data & not blocking; return nothing // release control so-as to allow data to be retrieved d_internal->unlock (); return (0); } } // use the actual amount of available data actual_noutput_items = d_queueSampleCount; } // number of channels int l_counter = (int) output_items.size(); // copy the items from the circular buffer(s) to 'work's output buffers // verify that the number copied out is as expected. while (--l_counter >= 0) { size_t t_n_output_items = actual_noutput_items; d_buffers[l_counter]->dequeue ((float*) output_items[l_counter], &t_n_output_items); if (t_n_output_items != actual_noutput_items) { std::cerr << "audio_osx_source::work(): ERROR: number of " << "available items changing unexpectedly; expecting " << actual_noutput_items << ", got " << t_n_output_items << "." << std::endl; throw std::runtime_error ("audio_osx_source::work()"); } } // subtract the actual number of items removed from the buffer(s) // from the local accounting of the number of available samples d_queueSampleCount -= actual_noutput_items; #if _OSX_AU_DEBUG_ std::cerr << "work2: SC = " << d_queueSampleCount << ", act#OI = " << actual_noutput_items << std::endl; #endif // release control to allow for other processing parts to run d_internal->unlock (); #if _OSX_AU_DEBUG_ std::cerr << "work3: Returning." << std::endl; #endif return (actual_noutput_items); } OSStatus audio_osx_source::ConverterCallback (AudioConverterRef inAudioConverter, UInt32* ioNumberDataPackets, AudioBufferList* ioData, AudioStreamPacketDescription** ioASPD, void* inUserData) { // take current device buffers and copy them to the tail of the // input buffers the lead buffer is already there in the first // d_leadSizeFrames slots audio_osx_source* This = static_cast(inUserData); AudioBufferList* l_inputABL = This->d_InputBuffer; UInt32 totalInputBufferSizeBytes = ((*ioNumberDataPackets) * sizeof (float)); int counter = This->d_n_deviceChannels; ioData->mNumberBuffers = This->d_n_deviceChannels; This->d_n_ActualInputFrames = (*ioNumberDataPackets); #if _OSX_AU_DEBUG_ std::cerr << "cc1: io#DP = " << (*ioNumberDataPackets) << ", TIBSB = " << totalInputBufferSizeBytes << ", #C = " << counter << std::endl; #endif while (--counter >= 0) { AudioBuffer* l_ioD_AB = &(ioData->mBuffers[counter]); l_ioD_AB->mNumberChannels = 1; l_ioD_AB->mData = (float*)(l_inputABL->mBuffers[counter].mData); l_ioD_AB->mDataByteSize = totalInputBufferSizeBytes; } #if _OSX_AU_DEBUG_ std::cerr << "cc2: Returning." << std::endl; #endif return (noErr); } OSStatus audio_osx_source::AUInputCallback (void* inRefCon, AudioUnitRenderActionFlags* ioActionFlags, const AudioTimeStamp* inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList* ioData) { OSStatus err = noErr; audio_osx_source* This = static_cast(inRefCon); This->d_internal->lock (); #if _OSX_AU_DEBUG_ std::cerr << "cb0: in#F = " << inNumberFrames << ", inBN = " << inBusNumber << ", SC = " << This->d_queueSampleCount << std::endl; #endif // Get the new audio data from the input device err = AudioUnitRender (This->d_InputAU, ioActionFlags, inTimeStamp, 1, //inBusNumber, inNumberFrames, This->d_InputBuffer); CheckErrorAndThrow (err, "AudioUnitRender", "audio_osx_source::AUInputCallback"); UInt32 AvailableInputFrames = inNumberFrames; This->d_n_AvailableInputFrames = inNumberFrames; // get the number of actual output frames, // either via converting the buffer or not UInt32 ActualOutputFrames; if (This->d_passThrough == true) { ActualOutputFrames = AvailableInputFrames; } else { UInt32 AvailableInputBytes = AvailableInputFrames * sizeof (float); UInt32 AvailableOutputBytes = AvailableInputBytes; UInt32 AvailableOutputFrames = AvailableOutputBytes / sizeof (float); UInt32 propertySize = sizeof (AvailableOutputBytes); err = AudioConverterGetProperty (This->d_AudioConverter, kAudioConverterPropertyCalculateOutputBufferSize, &propertySize, &AvailableOutputBytes); CheckErrorAndThrow (err, "AudioConverterGetProperty CalculateOutputBufferSize", "audio_osx_source::audio_osx_source"); AvailableOutputFrames = AvailableOutputBytes / sizeof (float); #if 0 // when decimating too much, the output sounds warbly due to // fluctuating # of output frames // This should not be a surprise, but there's probably some // clever programming that could lessed the effect ... // like finding the "ideal" # of output frames, and keeping // that number constant no matter the # of input frames UInt32 l_InputBytes = AvailableOutputBytes; propertySize = sizeof (AvailableOutputBytes); err = AudioConverterGetProperty (This->d_AudioConverter, kAudioConverterPropertyCalculateInputBufferSize, &propertySize, &l_InputBytes); CheckErrorAndThrow (err, "AudioConverterGetProperty CalculateInputBufferSize", "audio_osx_source::audio_osx_source"); if (l_InputBytes < AvailableInputBytes) { // OK to zero pad the input a little AvailableOutputFrames += 1; AvailableOutputBytes = AvailableOutputFrames * sizeof (float); } #endif #if _OSX_AU_DEBUG_ std::cerr << "cb1: avail: #IF = " << AvailableInputFrames << ", #OF = " << AvailableOutputFrames << std::endl; #endif ActualOutputFrames = AvailableOutputFrames; // convert the data to the correct rate // on input, ActualOutputFrames is the number of available output frames err = AudioConverterFillComplexBuffer (This->d_AudioConverter, (AudioConverterComplexInputDataProc)(This->ConverterCallback), inRefCon, &ActualOutputFrames, This->d_OutputBuffer, NULL); CheckErrorAndThrow (err, "AudioConverterFillComplexBuffer", "audio_osx_source::AUInputCallback"); // on output, ActualOutputFrames is the actual number of output frames #if _OSX_AU_DEBUG_ std::cerr << "cb2: actual: #IF = " << This->d_n_ActualInputFrames << ", #OF = " << AvailableOutputFrames << std::endl; if (This->d_n_ActualInputFrames != AvailableInputFrames) std::cerr << "cb2.1: avail#IF = " << AvailableInputFrames << ", actual#IF = " << This->d_n_ActualInputFrames << std::endl; #endif } // add the output frames to the buffers' queue, checking for overflow int l_counter = This->d_n_user_channels; int res = 0; while (--l_counter >= 0) { float* inBuffer = (float*) This->d_OutputBuffer->mBuffers[l_counter].mData; #if _OSX_AU_DEBUG_ std::cerr << "cb3: enqueuing audio data." << std::endl; #endif int l_res = This->d_buffers[l_counter]->enqueue (inBuffer, ActualOutputFrames); if (l_res == -1) res = -1; } if (res == -1) { // data coming in too fast // drop oldest buffer fputs ("aO", stderr); fflush (stderr); // set the local number of samples available to the max This->d_queueSampleCount = This->d_buffers[0]->buffer_length_items (); } else { // keep up the local sample count This->d_queueSampleCount += ActualOutputFrames; } #if _OSX_AU_DEBUG_ std::cerr << "cb4: #OI = " << ActualOutputFrames << ", #Cnt = " << This->d_queueSampleCount << ", mSC = " << This->d_max_sample_count << std::endl; #endif // signal that data is available, if appropraite This->d_cond_data->signal (); #if _OSX_AU_DEBUG_ std::cerr << "cb5: releasing internal mutex." << std::endl; #endif // release control to allow for other processing parts to run This->d_internal->unlock (); #if _OSX_AU_DEBUG_ std::cerr << "cb6: returning." << std::endl; #endif return (err); } void audio_osx_source::SetDefaultInputDeviceAsCurrent () { // set the default input device AudioDeviceID deviceID; UInt32 dataSize = sizeof (AudioDeviceID); AudioHardwareGetProperty (kAudioHardwarePropertyDefaultInputDevice, &dataSize, &deviceID); OSStatus err = AudioUnitSetProperty (d_InputAU, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &deviceID, sizeof (AudioDeviceID)); CheckErrorAndThrow (err, "AudioUnitSetProperty Current Device", "audio_osx_source::SetDefaultInputDeviceAsCurrent"); } #if _OSX_DO_LISTENERS_ OSStatus audio_osx_source::HardwareListener (AudioHardwarePropertyID inPropertyID, void *inClientData) { OSStatus err = noErr; audio_osx_source* This = static_cast(inClientData); std::cerr << "a_o_s::HardwareListener" << std::endl; // set the new default hardware input device for use by our AU This->SetDefaultInputDeviceAsCurrent (); // reset the converter to tell it that the stream has changed err = AudioConverterReset (This->d_AudioConverter); CheckErrorAndThrow (err, "AudioConverterReset", "audio_osx_source::UnitListener"); return (err); } OSStatus audio_osx_source::UnitListener (void *inRefCon, AudioUnit ci, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement) { OSStatus err = noErr; audio_osx_source* This = static_cast(inRefCon); AudioStreamBasicDescription asbd; std::cerr << "a_o_s::UnitListener" << std::endl; // get the converter's input ASBD (for printing) UInt32 propertySize = sizeof (asbd); err = AudioConverterGetProperty (This->d_AudioConverter, kAudioConverterCurrentInputStreamDescription, &propertySize, &asbd); CheckErrorAndThrow (err, "AudioConverterGetProperty " "CurrentInputStreamDescription", "audio_osx_source::UnitListener"); std::cerr << "UnitListener: Input Source changed." << std::endl << "Old Source Output Info:" << std::endl; PrintStreamDesc (&asbd); // get the new input unit's output ASBD propertySize = sizeof (asbd); err = AudioUnitGetProperty (This->d_InputAU, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 1, &asbd, &propertySize); CheckErrorAndThrow (err, "AudioUnitGetProperty StreamFormat", "audio_osx_source::UnitListener"); std::cerr << "New Source Output Info:" << std::endl; PrintStreamDesc (&asbd); // set the converter's input ASBD to this err = AudioConverterSetProperty (This->d_AudioConverter, kAudioConverterCurrentInputStreamDescription, propertySize, &asbd); CheckErrorAndThrow (err, "AudioConverterSetProperty " "CurrentInputStreamDescription", "audio_osx_source::UnitListener"); // reset the converter to tell it that the stream has changed err = AudioConverterReset (This->d_AudioConverter); CheckErrorAndThrow (err, "AudioConverterReset", "audio_osx_source::UnitListener"); return (err); } #endif