#!/usr/bin/env python # # Copyright 2004,2005 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # from gnuradio import gr, atsc import math def main(): tb = gr.top_block() u = gr.file_source(gr.sizeof_float,"/tmp/atsc_pipe_2") input_rate = 19.2e6 IF_freq = 5.75e6 # 1/2 as wide because we're designing lp filter symbol_rate = atsc.ATSC_SYMBOL_RATE/2. NTAPS = 279 tt = gr.firdes.root_raised_cosine (1.0, input_rate, symbol_rate, .115, NTAPS) # heterodyne the low pass coefficients up to the specified bandpass # center frequency. Note that when we do this, the filter bandwidth # is effectively twice the low pass (2.69 * 2 = 5.38) and hence # matches the diagram in the ATSC spec. arg = 2. * math.pi * IF_freq / input_rate t=[] for i in range(len(tt)): t += [tt[i] * 2. * math.cos(arg * i)] rrc = gr.fir_filter_fff(1, t) fpll = atsc.fpll() pilot_freq = IF_freq - 3e6 + 0.31e6 lower_edge = 6e6 - 0.31e6 upper_edge = IF_freq - 3e6 + pilot_freq transition_width = upper_edge - lower_edge lp_coeffs = gr.firdes.low_pass (1.0, input_rate, (lower_edge + upper_edge) * 0.5, transition_width, gr.firdes.WIN_HAMMING); lp_filter = gr.fir_filter_fff (1,lp_coeffs) alpha = 1e-5 iir = gr.single_pole_iir_filter_ff(alpha) remove_dc = gr.sub_ff() out = gr.file_sink(gr.sizeof_float,"/tmp/atsc_pipe_3") # out = gr.file_sink(gr.sizeof_float,"/mnt/sata/atsc_data_float") tb.connect(u, fpll, lp_filter) tb.connect(lp_filter, iir) tb.connect(lp_filter, (remove_dc,0)) tb.connect(iir, (remove_dc,1)) tb.connect(remove_dc, out) tb.run() if __name__ == '__main__': main ()