#!/usr/bin/env /usr/bin/python # # Copyright 2004 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # # This module starts the atsc processing chain taking the captured # off-air signal created with: # # uhd_rx_cfile.py --samp-rate=6.4e6 # -f
# -g # -s output shorts # # All this module does is multiply the sample rate by 3, from 6.4e6 to # 19.2e6 complex samples / sec, then lowpass filter with a cutoff of 3.2MHz # and a transition band width of .5MHz. Center of the tv channels is # then at 0 with edges at -3.2MHz and 3.2MHz. from gnuradio import gr, atsc import sys, os, math def graph (args): nargs = len(args) if nargs == 2: infile = args[0] outfile = args[1] else: raise ValueError('usage: interp.py input_file output_file\n') tb = gr.top_block () # Convert to a from shorts to a stream of complex numbers. srcf = gr.file_source (gr.sizeof_short,infile) s2ss = gr.stream_to_streams(gr.sizeof_short,2) s2f1 = gr.short_to_float() s2f2 = gr.short_to_float() src0 = gr.float_to_complex() tb.connect(srcf, s2ss) tb.connect((s2ss, 0), s2f1, (src0, 0)) tb.connect((s2ss, 1), s2f2, (src0, 1)) # Low pass filter it and increase sample rate by a factor of 3. lp_coeffs = gr.firdes.low_pass ( 3, 19.2e6, 3.2e6, .5e6, gr.firdes.WIN_HAMMING ) lp = gr.interp_fir_filter_ccf ( 3, lp_coeffs ) tb.connect(src0, lp) # Upconvert it. duc_coeffs = gr.firdes.low_pass ( 1, 19.2e6, 9e6, 1e6, gr.firdes.WIN_HAMMING ) duc = gr.freq_xlating_fir_filter_ccf ( 1, duc_coeffs, 5.75e6, 19.2e6 ) # Discard the imaginary component. c2f = gr.complex_to_float() tb.connect(lp, duc, c2f) # Frequency Phase Lock Loop input_rate = 19.2e6 IF_freq = 5.75e6 # 1/2 as wide because we're designing lp filter symbol_rate = atsc.ATSC_SYMBOL_RATE/2. NTAPS = 279 tt = gr.firdes.root_raised_cosine (1.0, input_rate, symbol_rate, .115, NTAPS) # heterodyne the low pass coefficients up to the specified bandpass # center frequency. Note that when we do this, the filter bandwidth # is effectively twice the low pass (2.69 * 2 = 5.38) and hence # matches the diagram in the ATSC spec. arg = 2. * math.pi * IF_freq / input_rate t=[] for i in range(len(tt)): t += [tt[i] * 2. * math.cos(arg * i)] rrc = gr.fir_filter_fff(1, t) fpll = atsc.fpll() pilot_freq = IF_freq - 3e6 + 0.31e6 lower_edge = 6e6 - 0.31e6 upper_edge = IF_freq - 3e6 + pilot_freq transition_width = upper_edge - lower_edge lp_coeffs = gr.firdes.low_pass (1.0, input_rate, (lower_edge + upper_edge) * 0.5, transition_width, gr.firdes.WIN_HAMMING); lp_filter = gr.fir_filter_fff (1,lp_coeffs) alpha = 1e-5 iir = gr.single_pole_iir_filter_ff(alpha) remove_dc = gr.sub_ff() tb.connect(c2f, fpll, lp_filter) tb.connect(lp_filter, iir) tb.connect(lp_filter, (remove_dc,0)) tb.connect(iir, (remove_dc,1)) # Bit Timing Loop, Field Sync Checker and Equalizer btl = atsc.bit_timing_loop() fsc = atsc.fs_checker() eq = atsc.equalizer() fsd = atsc.field_sync_demux() tb.connect(remove_dc, btl) tb.connect((btl, 0),(fsc, 0),(eq, 0),(fsd, 0)) tb.connect((btl, 1),(fsc, 1),(eq, 1),(fsd, 1)) # Viterbi viterbi = atsc.viterbi_decoder() deinter = atsc.deinterleaver() rs_dec = atsc.rs_decoder() derand = atsc.derandomizer() depad = atsc.depad() dst = gr.file_sink(gr.sizeof_char, outfile) tb.connect(fsd, viterbi, deinter, rs_dec, derand, depad, dst) dst2 = gr.file_sink(gr.sizeof_gr_complex, "atsc_complex.data") tb.connect(src0, dst2) tb.run () if __name__ == '__main__': graph (sys.argv[1:])