/* -*- c++ -*- */ /* * Copyright 2002 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include <atsci_equalizer_lms.h> #include <assert.h> #include <algorithm> #include <atsci_pnXXX.h> #include <stdio.h> using std::min; using std::max; static const int NTAPS = 256; static const int NPRETAPS = (int) (NTAPS * 0.8); // probably should be either .2 or .8 // the length of the field sync pattern that we know unequivocally static const int KNOWN_FIELD_SYNC_LENGTH = 4 + 511 + 3 * 63; // static const float *get_data_seg_sync_training_sequence (int offset); static int get_field_sync_training_sequence_length (int offset); static const float *get_field_sync_training_sequence (int which_field, int offset); atsci_equalizer_lms::atsci_equalizer_lms () : d_taps (NTAPS) { for (int i = 0; i < NTAPS; i++) { d_taps[i] = 0.0; } trainingfile=fopen("taps.txt","w"); } atsci_equalizer_lms::~atsci_equalizer_lms () { } void atsci_equalizer_lms::reset () { atsci_equalizer::reset (); // invoke superclass for (int i = 0; i < NTAPS; i++) { d_taps[i] = 0.0; } } int atsci_equalizer_lms::ntaps () const { return NTAPS; } int atsci_equalizer_lms::npretaps () const { return NPRETAPS; } /*! * Input range is known NOT TO CONTAIN data segment syncs * or field syncs. This should be the fast path. In the * non decicion directed case, this just runs the input * through the filter without adapting it. * * \p input_samples has (nsamples + ntaps() - 1) valid entries. * input_samples[0] .. input_samples[nsamples - 1 + ntaps() - 1] may be * referenced to compute the output values. */ void atsci_equalizer_lms::filter_normal (const float *input_samples, float *output_samples, int nsamples) { // handle data filterN (input_samples, output_samples, nsamples); } /*! * Input range is known to consist of only a data segment sync or a * portion of a data segment sync. \p nsamples will be in [1,4]. * \p offset will be in [0,3]. \p offset is the offset of the input * from the beginning of the data segment sync pattern. * * \p input_samples has (nsamples + ntaps() - 1) valid entries. * input_samples[0] .. input_samples[nsamples - 1 + ntaps() - 1] may be * referenced to compute the output values. */ void atsci_equalizer_lms::filter_data_seg_sync (const float *input_samples, float *output_samples, int nsamples, int offset) { // handle data // adaptN (input_samples, get_data_seg_sync_training_sequence (offset), // output_samples, nsamples); filterN (input_samples, output_samples, nsamples); // cerr << "Seg Sync: offset " << offset << "\tnsamples\t" << nsamples << "\t pre, 5 -5 -5 5\t" << // output_samples[0] << "\t" << output_samples[1] << "\t" << output_samples[2] << "\t" << output_samples[3] << endl; } /*! * Input range is known to consist of only a field sync segment or a * portion of a field sync segment. \p nsamples will be in [1,832]. * \p offset will be in [0,831]. \p offset is the offset of the input * from the beginning of the data segment sync pattern. We consider the * 4 symbols of the immediately preceding data segment sync to be the * first symbols of the field sync segment. \p which_field is in [0,1] * and specifies which field (duh). * * \p input_samples has (nsamples + ntaps() - 1) valid entries. * input_samples[0] .. input_samples[nsamples - 1 + ntaps() - 1] may be * referenced to compute the output values. */ void atsci_equalizer_lms::filter_field_sync (const float *input_samples, float *output_samples, int nsamples, int offset, int which_field) { // Only the first 4 + 511 + 3 * 63 symbols are completely defined. // Those after that the symbols are bilevel, so we could use decision feedback and use // that to train, but for now, don't train on them. int n = min (nsamples, get_field_sync_training_sequence_length (offset)); // handle known training sequence adaptN (input_samples, get_field_sync_training_sequence (which_field, offset), output_samples, n); // just filter any unknown portion if (nsamples > n) filterN (&input_samples[n], &output_samples[n], nsamples - n); if (offset == 0 && nsamples > 0){ for (int i = 0; i < NTAPS; i++) fprintf(trainingfile,"%f ",d_taps[i]); fprintf (trainingfile,"\n"); } } // ---------------------------------------------------------------- // // filter a single output // float atsci_equalizer_lms::filter1 (const float input[]) { static const int N_UNROLL = 4; float acc0 = 0; float acc1 = 0; float acc2 = 0; float acc3 = 0; unsigned i = 0; unsigned n = (NTAPS / N_UNROLL) * N_UNROLL; for (i = 0; i < n; i += N_UNROLL){ acc0 += d_taps[i + 0] * input[i + 0]; acc1 += d_taps[i + 1] * input[i + 1]; acc2 += d_taps[i + 2] * input[i + 2]; acc3 += d_taps[i + 3] * input[i + 3]; } for (; i < (unsigned) NTAPS; i++) acc0 += d_taps[i] * input[i]; return (acc0 + acc1 + acc2 + acc3); } // // filter and adapt a single output // float atsci_equalizer_lms::adapt1 (const float input[], float ideal_output) { static const double BETA = 0.00005; // FIXME figure out what this ought to be // FIXME add gear-shifting double y = filter1 (input); double e = y - ideal_output; // update taps... for (int i = 0; i < NTAPS; i++){ d_taps[i] = d_taps[i] - BETA * e * (double)(input[i]); } return y; } void atsci_equalizer_lms::filterN (const float *input_samples, float *output_samples, int nsamples) { for (int i = 0; i < nsamples; i++) output_samples[i] = filter1 (&input_samples[i]); } void atsci_equalizer_lms::adaptN (const float *input_samples, const float *training_pattern, float *output_samples, int nsamples) { for (int i = 0; i < nsamples; i++) output_samples[i] = adapt1 (&input_samples[i], training_pattern[i]); } // ---------------------------------------------------------------- static float bin_map (int bit) { return bit ? +5 : -5; } static void init_field_sync_common (float *p, int mask) { int i = 0; p[i++] = bin_map (1); // data segment sync pulse p[i++] = bin_map (0); p[i++] = bin_map (0); p[i++] = bin_map (1); for (int j = 0; j < 511; j++) // PN511 p[i++] = bin_map (atsc_pn511[j]); for (int j = 0; j < 63; j++) // PN63 p[i++] = bin_map (atsc_pn63[j]); for (int j = 0; j < 63; j++) // PN63, toggled on field 2 p[i++] = bin_map (atsc_pn63[j] ^ mask); for (int j = 0; j < 63; j++) // PN63 p[i++] = bin_map (atsc_pn63[j]); assert (i == KNOWN_FIELD_SYNC_LENGTH); } #if 0 static const float * get_data_seg_sync_training_sequence (int offset) { static const float training_data[4] = { +5, -5, -5, +5 }; return &training_data[offset]; } #endif static int get_field_sync_training_sequence_length (int offset) { return max (0, KNOWN_FIELD_SYNC_LENGTH - offset); } static const float * get_field_sync_training_sequence (int which_field, int offset) { static float *field_1 = 0; static float *field_2 = 0; if (field_1 == 0){ field_1 = new float[KNOWN_FIELD_SYNC_LENGTH]; field_2 = new float[KNOWN_FIELD_SYNC_LENGTH]; init_field_sync_common (field_1, 0); init_field_sync_common (field_2, 1); } if (which_field == 0) return &field_1[offset]; else return &field_2[offset]; }