/* -*- c++ -*- */ /* * Copyright 2002 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include // typedefs for fundamental i/o types typedef atsc_data_segment iType; typedef atsc_data_segment oType; static const int NUMBER_OF_OUTPUTS = 1; // # of output streams (almost always one) static const int N_SAVED_SYMBOLS = GrAtscFieldSyncMux::N_SAVED_SYMBOLS; static void init_field_sync_common (unsigned char *p, int mask, const unsigned char saved_symbols[N_SAVED_SYMBOLS]) { static const unsigned char bin_map[2] = { 1, 6 }; // map binary values to 1 of 8 levels int i = 0; p[i++] = bin_map[1]; // data segment sync pulse p[i++] = bin_map[0]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; for (int j = 0; j < 511; j++) // PN511 p[i++] = bin_map[atsc_pn511[j]]; for (int j = 0; j < 63; j++) // PN63 p[i++] = bin_map[atsc_pn63[j]]; for (int j = 0; j < 63; j++) // PN63, toggled on field 2 p[i++] = bin_map[atsc_pn63[j] ^ mask]; for (int j = 0; j < 63; j++) // PN63 p[i++] = bin_map[atsc_pn63[j]]; p[i++] = bin_map[0]; // 24 bits of VSB8 mode identifiera p[i++] = bin_map[0]; p[i++] = bin_map[0]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; p[i++] = bin_map[0]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; p[i++] = bin_map[1]; p[i++] = bin_map[1]; p[i++] = bin_map[1]; p[i++] = bin_map[1]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; p[i++] = bin_map[1]; p[i++] = bin_map[0]; p[i++] = bin_map[1]; p[i++] = bin_map[0]; for (int j = 0; j < 92; j++) // 92 more bits p[i++] = bin_map[atsc_pn63[j % 63]]; // now copy the last 12 symbols of the previous segment for (int j = 0; j < N_SAVED_SYMBOLS; j++) p[i++] = saved_symbols[j]; assert (i == ATSC_DATA_SEGMENT_LENGTH); } inline static void init_field_sync_1 (atsc_data_segment *s, const unsigned char saved_symbols[N_SAVED_SYMBOLS]) { init_field_sync_common (&s->data[0], 0, saved_symbols); } inline static void init_field_sync_2 (atsc_data_segment *s, const unsigned char saved_symbols[N_SAVED_SYMBOLS]) { init_field_sync_common (&s->data[0], 1, saved_symbols); } static void save_last_symbols (unsigned char saved_symbols[N_SAVED_SYMBOLS], const atsc_data_segment &seg) { for (int i = 0; i < N_SAVED_SYMBOLS; i++) saved_symbols[i] = seg.data[i + ATSC_DATA_SEGMENT_LENGTH - N_SAVED_SYMBOLS]; } inline static bool last_regular_seg_p (const plinfo &pli) { return pli.regular_seg_p () && (pli.segno () == ATSC_DSEGS_PER_FIELD - 1); } GrAtscFieldSyncMux::GrAtscFieldSyncMux () : VrHistoryProc (NUMBER_OF_OUTPUTS), d_current_index (0), d_already_output_field_sync (false) { // 1 + number of extra input elements at which we look. This is // used by the superclass's forecast routine to get us the correct // range on our inputs. history = 1; // any other init here. } GrAtscFieldSyncMux::~GrAtscFieldSyncMux () { // Anything that isn't automatically cleaned up... } void GrAtscFieldSyncMux::pre_initialize () { // we jack our output sampling frequency up to account for inserted field syncs setSamplingFrequency (getInputSamplingFrequencyN (0) * 313./312.); } /* * we need a non-standard version of forecast because our output isn't * exactly 1:1 with our input. */ int GrAtscFieldSyncMux::forecast (VrSampleRange output, VrSampleRange inputs[]) { for(unsigned int i = 0; i < numberInputs; i++) { inputs[i].index = d_current_index; inputs[i].size = output.size; } return 0; } /* * This is the real work horse. In general this interface can handle * multiple streams of input and output, but we almost always * use a single input and output stream. */ int GrAtscFieldSyncMux::work (VrSampleRange output, void *ao[], VrSampleRange inputs[], void *ai[]) { // If we have state that persists across invocations (e.g., we have // instance variables that we modify), we must use the sync method // to indicate to the scheduler that our output must be computed in // order. This doesn't keep other things from being run in // parallel, it just means that at any given time, there is only a // single thread working this code, and that the scheduler will // ensure that we are asked to produce output that is contiguous and // that will be presented to us in order of increasing time. // We have state, hence we must use sync. sync (output.index); // construct some nicer i/o pointers to work with. iType *in = ((iType **) ai)[0]; oType *out = ((oType **) ao)[0]; // We must produce output.size units of output. unsigned int index = 0; for (unsigned int outdex = 0; outdex < output.size; outdex++){ assert (in[index].pli.regular_seg_p ()); if (!in[index].pli.first_regular_seg_p ()){ out[outdex] = in[index]; // just copy in to out if (last_regular_seg_p (in[index].pli)) save_last_symbols (d_saved_symbols, in[index]); index++; } else { // first_regular_seg_p if (!d_already_output_field_sync){ // write out field sync... atsc_data_segment field_sync; if (in[index].pli.in_field1_p ()) init_field_sync_1 (&field_sync, d_saved_symbols); else init_field_sync_2 (&field_sync, d_saved_symbols); // note that index doesn't advance in this branch out[outdex] = field_sync; d_already_output_field_sync = true; } else { // already output field sync, now output first regular segment out[outdex] = in[index]; index++; d_already_output_field_sync = false; } } } d_current_index += index; // Return the number of units we produced. // Note that for all intents and purposes, it is an error to // produce less than you are asked for. return output.size; }