#!/usr/bin/env python # # Copyright 2004,2007,2010,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gr_unittest import analog_swig as analog import math class test_sig_source(gr_unittest.TestCase): def setUp(self): self.tb = gr.top_block() def tearDown(self): self.tb = None def test_const_f(self): tb = self.tb expected_result = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5) src1 = analog.sig_source_f(1e6, analog.GR_CONST_WAVE, 0, 1.5) op = gr.head(gr.sizeof_float, 10) dst1 = gr.vector_sink_f() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertEqual(expected_result, dst_data) def test_const_i(self): tb = self.tb expected_result = (1, 1, 1, 1) src1 = analog.sig_source_i(1e6, analog.GR_CONST_WAVE, 0, 1) op = gr.head(gr.sizeof_int, 4) dst1 = gr.vector_sink_i() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertEqual(expected_result, dst_data) def test_sine_f(self): tb = self.tb sqrt2 = math.sqrt(2) / 2 expected_result = (0, sqrt2, 1, sqrt2, 0, -sqrt2, -1, -sqrt2, 0) src1 = analog.sig_source_f(8, analog.GR_SIN_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_float, 9) dst1 = gr.vector_sink_f() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5) def test_cosine_f(self): tb = self.tb sqrt2 = math.sqrt(2) / 2 expected_result = (1, sqrt2, 0, -sqrt2, -1, -sqrt2, 0, sqrt2, 1) src1 = analog.sig_source_f(8, analog.GR_COS_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_float, 9) dst1 = gr.vector_sink_f() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5) def test_sqr_c(self): tb = self.tb #arg6 is a bit before -PI/2 expected_result = (1j, 1j, 0, 0, 1, 1, 1+0j, 1+1j, 1j) src1 = analog.sig_source_c(8, analog.GR_SQR_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_gr_complex, 9) dst1 = gr.vector_sink_c() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertEqual(expected_result, dst_data) def test_tri_c(self): tb = self.tb expected_result = (1+.5j, .75+.75j, .5+1j, .25+.75j, 0+.5j, .25+.25j, .5+0j, .75+.25j, 1+.5j) src1 = analog.sig_source_c(8, analog.GR_TRI_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_gr_complex, 9) dst1 = gr.vector_sink_c() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5) def test_saw_c(self): tb = self.tb expected_result = (.5+.25j, .625+.375j, .75+.5j, .875+.625j, 0+.75j, .125+.875j, .25+1j, .375+.125j, .5+.25j) src1 = analog.sig_source_c(8, analog.GR_SAW_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_gr_complex, 9) dst1 = gr.vector_sink_c() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5) def test_sqr_f(self): tb = self.tb expected_result = (0, 0, 0, 0, 1, 1, 1, 1, 0) src1 = analog.sig_source_f(8, analog.GR_SQR_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_float, 9) dst1 = gr.vector_sink_f() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertEqual(expected_result, dst_data) def test_tri_f(self): tb = self.tb expected_result = (1, .75, .5, .25, 0, .25, .5, .75, 1) src1 = analog.sig_source_f(8, analog.GR_TRI_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_float, 9) dst1 = gr.vector_sink_f() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5) def test_saw_f(self): tb = self.tb expected_result = (.5, .625, .75, .875, 0, .125, .25, .375, .5) src1 = analog.sig_source_f(8, analog.GR_SAW_WAVE, 1.0, 1.0) op = gr.head(gr.sizeof_float, 9) dst1 = gr.vector_sink_f() tb.connect(src1, op) tb.connect(op, dst1) tb.run() dst_data = dst1.data() self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 5) if __name__ == '__main__': gr_unittest.run(test_sig_source, "test_sig_source.xml")