#!/usr/bin/env python # # Copyright 2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gr_unittest import analog_swig as analog import cmath class test_quadrature_demod(gr_unittest.TestCase): def setUp(self): self.tb = gr.top_block() def tearDown(self): self.tb = None def test_quad_demod_001(self): f = 1000.0 fs = 8000.0 src_data = [] for i in xrange(200): ti = i/fs src_data.append(cmath.exp(2j*cmath.pi*f*ti)) # f/fs is a quarter turn per sample. # Set the gain based on this to get 1 out. gain = 1.0/(cmath.pi/4) expected_result = [0,] + 199*[1.0] src = gr.vector_source_c(src_data) op = analog.quadrature_demod_cf(gain) dst = gr.vector_sink_f() self.tb.connect(src, op) self.tb.connect(op, dst) self.tb.run() result_data = dst.data() self.assertComplexTuplesAlmostEqual(expected_result, result_data, 5) if __name__ == '__main__': gr_unittest.run(test_quadrature_demod, "test_quadrature_demod.xml")