/* -*- c++ -*- */ /* * Copyright 2004,2010,2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* @WARNING@ */ #ifdef HAVE_CONFIG_H #include #endif #include "@IMPL_NAME@.h" #include #include #include #include #include namespace gr { namespace analog { @BASE_NAME@::sptr @BASE_NAME@::make(double sampling_freq, gr_waveform_t waveform, double frequency, double ampl, @TYPE@ offset) { return gnuradio::get_initial_sptr (new @IMPL_NAME@(sampling_freq, waveform, frequency, ampl, offset)); } @IMPL_NAME@::@IMPL_NAME@(double sampling_freq, gr_waveform_t waveform, double frequency, double ampl, @TYPE@ offset) : gr_sync_block("@BASE_NAME@", gr_make_io_signature(0, 0, 0), gr_make_io_signature(1, 1, sizeof(@TYPE@))), d_sampling_freq(sampling_freq), d_waveform(waveform), d_frequency(frequency), d_ampl(ampl), d_offset(offset) { d_nco.set_freq(2 * M_PI * d_frequency / d_sampling_freq); } @IMPL_NAME@::~@IMPL_NAME@() { } int @IMPL_NAME@::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { @TYPE@ *optr = (@TYPE@*)output_items[0]; @TYPE@ t; switch(d_waveform) { #if @IS_COMPLEX@ // complex? case GR_CONST_WAVE: t = (gr_complex) d_ampl + d_offset; std::fill_n(optr, noutput_items, t); break; case GR_SIN_WAVE: case GR_COS_WAVE: d_nco.sincos(optr, noutput_items, d_ampl); if(d_offset == gr_complex(0,0)) break; for(int i = 0; i < noutput_items; i++) { optr[i] += d_offset; } break; /* Implements a real square wave high from -PI to 0. * The imaginary square wave leads by 90 deg. */ case GR_SQR_WAVE: for(int i = 0; i < noutput_items; i++) { if(d_nco.get_phase() < -1*M_PI/2) optr[i] = gr_complex(d_ampl, 0) + d_offset; else if(d_nco.get_phase() < 0) optr[i] = gr_complex(d_ampl, d_ampl) + d_offset; else if(d_nco.get_phase() < M_PI/2) optr[i] = gr_complex(0, d_ampl) + d_offset; else optr[i] = d_offset; d_nco.step(); } break; /* Implements a real triangle wave rising from -PI to 0 and * falling from 0 to PI. The imaginary triangle wave leads by * 90 deg. */ case GR_TRI_WAVE: for(int i = 0; i < noutput_items; i++) { if(d_nco.get_phase() < -1*M_PI/2){ optr[i] = gr_complex(d_ampl*d_nco.get_phase()/M_PI + d_ampl, -1*d_ampl*d_nco.get_phase()/M_PI - d_ampl/2) + d_offset; } else if(d_nco.get_phase() < 0) { optr[i] = gr_complex(d_ampl*d_nco.get_phase()/M_PI + d_ampl, d_ampl*d_nco.get_phase()/M_PI + d_ampl/2) + d_offset; } else if(d_nco.get_phase() < M_PI/2) { optr[i] = gr_complex(-1*d_ampl*d_nco.get_phase()/M_PI + d_ampl, d_ampl*d_nco.get_phase()/M_PI + d_ampl/2) + d_offset; } else { optr[i] = gr_complex(-1*d_ampl*d_nco.get_phase()/M_PI + d_ampl, -1*d_ampl*d_nco.get_phase()/M_PI + 3*d_ampl/2) + d_offset; } d_nco.step(); } break; /* Implements a real saw tooth wave rising from -PI to PI. * The imaginary saw tooth wave leads by 90 deg. */ case GR_SAW_WAVE: for(int i = 0; i < noutput_items; i++) { if(d_nco.get_phase() < -1*M_PI/2) { optr[i] = gr_complex(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2, d_ampl*d_nco.get_phase()/(2*M_PI) + 5*d_ampl/4) + d_offset; } else { optr[i] = gr_complex(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2, d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/4) + d_offset; } d_nco.step(); } break; #else // nope... case GR_CONST_WAVE: t = (@TYPE@)d_ampl + d_offset; std::fill_n(optr, noutput_items, t); break; case GR_SIN_WAVE: d_nco.sin(optr, noutput_items, d_ampl); if(d_offset == 0) break; for(int i = 0; i < noutput_items; i++) { optr[i] += d_offset; } break; case GR_COS_WAVE: d_nco.cos(optr, noutput_items, d_ampl); if(d_offset == 0) break; for(int i = 0; i < noutput_items; i++) { optr[i] += d_offset; } break; /* The square wave is high from -PI to 0. */ case GR_SQR_WAVE: t = (@TYPE@)d_ampl + d_offset; for(int i = 0; i < noutput_items; i++) { if(d_nco.get_phase() < 0) optr[i] = t; else optr[i] = d_offset; d_nco.step(); } break; /* The triangle wave rises from -PI to 0 and falls from 0 to PI. */ case GR_TRI_WAVE: for(int i = 0; i < noutput_items; i++) { double t = d_ampl*d_nco.get_phase()/M_PI; if (d_nco.get_phase() < 0) optr[i] = static_cast<@TYPE@>(t + d_ampl + d_offset); else optr[i] = static_cast<@TYPE@>(-1*t + d_ampl + d_offset); d_nco.step(); } break; /* The saw tooth wave rises from -PI to PI. */ case GR_SAW_WAVE: for(int i = 0; i < noutput_items; i++) { t = static_cast<@TYPE@>(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2 + d_offset); optr[i] = t; d_nco.step(); } break; #endif default: throw std::runtime_error("gr_sig_source: invalid waveform"); } return noutput_items; } void @NAME@::set_sampling_freq(double sampling_freq) { d_sampling_freq = sampling_freq; d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq); } void @NAME@::set_waveform(gr_waveform_t waveform) { d_waveform = waveform; } void @NAME@::set_frequency(double frequency) { d_frequency = frequency; d_nco.set_freq(2 * M_PI * d_frequency / d_sampling_freq); } void @NAME@::set_amplitude(double ampl) { d_ampl = ampl; } void @NAME@::set_offset(@TYPE@ offset) { d_offset = offset; } } /* namespace analog */ } /* namespace gr */