#!/usr/bin/env python # # Copyright 2005,2007 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gru, eng_notation, optfir from gnuradio import audio from gnuradio import usrp from gnuradio import blks2 from gnuradio.eng_option import eng_option from gnuradio.wxgui import slider, powermate from gnuradio.wxgui import stdgui2, fftsink2, form from optparse import OptionParser from usrpm import usrp_dbid import sys import math import wx #//////////////////////////////////////////////////////////////////////// # Control Stuff #//////////////////////////////////////////////////////////////////////// class my_top_block (stdgui2.std_top_block): def __init__(self,frame,panel,vbox,argv): stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv) parser=OptionParser(option_class=eng_option) parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None, help="select USRP Rx side A or B (default=A)") parser.add_option("-f", "--freq", type="eng_float", default=146.585e6, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("-V", "--volume", type="eng_float", default=None, help="set volume (default is midpoint)") parser.add_option("-O", "--audio-output", type="string", default="", help="pcm device name. E.g., hw:0,0 or surround51 or /dev/dsp") parser.add_option("-N", "--no-gui", action="store_true", default=False) (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) if options.freq < 1e6: options.freq *= 1e6 self.frame = frame self.panel = panel self.state = "FREQ" self.freq = 0 self.freq_step = 25e3 self.rxpath = receive_path(options.rx_subdev_spec, options.gain, options.audio_output) self.connect(self.rxpath) self._build_gui(vbox, options.no_gui) # set initial values if options.volume is not None: self.set_volume(options.volume) if not(self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") self.set_gain(self.rxpath.gain) # update gui self.set_volume(self.rxpath.volume) # update gui self.set_squelch(self.rxpath.threshold()) # update gui def _set_status_msg(self, msg, which=0): self.frame.GetStatusBar().SetStatusText(msg, which) def _build_gui(self, vbox, no_gui): def _form_set_freq(kv): return self.set_freq(kv['freq']) self.src_fft = None if 1 and not(no_gui): self.src_fft = fftsink2.fft_sink_c(self.panel, title="Data from USRP", fft_size=512, sample_rate=self.rxpath.if_rate, ref_scale=32768.0, ref_level=0, y_per_div=10, y_divs=12) self.connect (self.rxpath.u, self.src_fft) vbox.Add (self.src_fft.win, 4, wx.EXPAND) if 1 and not(no_gui): rx_fft = fftsink2.fft_sink_c(self.panel, title="Post s/w DDC", fft_size=512, sample_rate=self.rxpath.quad_rate, ref_level=80, y_per_div=20) self.connect (self.rxpath.ddc, rx_fft) vbox.Add (rx_fft.win, 4, wx.EXPAND) if 1 and not(no_gui): post_deemph_fft = fftsink2.fft_sink_f(self.panel, title="Post Deemph", fft_size=512, sample_rate=self.rxpath.audio_rate, y_per_div=10, ref_level=-40) self.connect (self.rxpath.fmrx.deemph, post_deemph_fft) vbox.Add (post_deemph_fft.win, 4, wx.EXPAND) if 0: post_filt_fft = fftsink2.fft_sink_f(self.panel, title="Post Filter", fft_size=512, sample_rate=audio_rate, y_per_div=10, ref_level=-40) self.connect (self.guts.audio_filter, post_filt) vbox.Add (fft_win4, 4, wx.EXPAND) # control area form at bottom self.myform = myform = form.form() hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((5,0), 0) myform['freq'] = form.float_field( parent=self.panel, sizer=hbox, label="Freq", weight=1, callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg)) #hbox.Add((5,0), 0) #myform['freq_slider'] = \ # form.quantized_slider_field(parent=self.panel, sizer=hbox, weight=3, # range=(87.9e6, 108.1e6, 0.1e6), # callback=self.set_freq) hbox.Add((5,0), 0) vbox.Add(hbox, 0, wx.EXPAND) hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add((5,0), 0) myform['volume'] = \ form.quantized_slider_field(parent=self.panel, sizer=hbox, label="Volume", weight=3, range=self.volume_range(), callback=self.set_volume) hbox.Add((5,0), 0) myform['squelch'] = \ form.quantized_slider_field(parent=self.panel, sizer=hbox, label="Squelch", weight=3, range=self.rxpath.squelch_range(), callback=self.set_squelch) hbox.Add((5,0), 0) myform['gain'] = \ form.quantized_slider_field(parent=self.panel, sizer=hbox, label="Gain", weight=3, range=self.rxpath.subdev.gain_range(), callback=self.set_gain) hbox.Add((5,0), 0) vbox.Add(hbox, 0, wx.EXPAND) try: self.knob = powermate.powermate(self.frame) self.rot = 0 powermate.EVT_POWERMATE_ROTATE (self.frame, self.on_rotate) powermate.EVT_POWERMATE_BUTTON (self.frame, self.on_button) except: print "FYI: No Powermate or Contour Knob found" def on_rotate (self, event): self.rot += event.delta if (self.state == "FREQ"): if self.rot >= 3: self.set_freq(self.freq + self.freq_step) self.rot -= 3 elif self.rot <=-3: self.set_freq(self.freq - self.freq_step) self.rot += 3 else: step = self.volume_range()[2] if self.rot >= 3: self.set_volume(self.rxpath.volume + step) self.rot -= 3 elif self.rot <=-3: self.set_volume(self.rxpath.volume - step) self.rot += 3 def on_button (self, event): if event.value == 0: # button up return self.rot = 0 if self.state == "FREQ": self.state = "VOL" else: self.state = "FREQ" self.update_status_bar () def set_squelch(self, threshold_in_db): self.rxpath.set_squelch(threshold_in_db) self.myform['squelch'].set_value(self.rxpath.threshold()) def set_volume (self, vol): self.rxpath.set_volume(vol) self.myform['volume'].set_value(self.rxpath.volume) self.update_status_bar () def set_freq(self, target_freq): r = self.rxpath.set_freq(target_freq) if r: self.freq = target_freq self.myform['freq'].set_value(target_freq) # update displayed value #self.myform['freq_slider'].set_value(target_freq) # update displayed value self.update_status_bar() self._set_status_msg("OK", 0) return True self._set_status_msg("Failed", 0) return False def set_gain(self, gain): self.myform['gain'].set_value(gain) # update displayed value self.rxpath.set_gain(gain) def update_status_bar (self): msg = "Volume:%r Setting:%s" % (self.rxpath.volume, self.state) self._set_status_msg(msg, 1) if self.src_fft: self.src_fft.set_baseband_freq(self.freq) def volume_range(self): return (-20.0, 0.0, 0.5) #//////////////////////////////////////////////////////////////////////// # Receive Path #//////////////////////////////////////////////////////////////////////// USE_SIMPLE_SQUELCH = False class receive_path(gr.hier_block2): def __init__(self, subdev_spec, gain, audio_output): gr.hier_block2.__init__(self, "receive_path", gr.io_signature(0, 0, 0), # Input signature gr.io_signature(0, 0, 0)) # Output signature self.u = usrp.source_c () adc_rate = self.u.adc_rate() self.if_rate = 256e3 # 256 kS/s usrp_decim = int(adc_rate // self.if_rate) if_decim = 4 self.u.set_decim_rate(usrp_decim) self.quad_rate = self.if_rate // if_decim # 64 kS/s audio_decim = 2 self.audio_rate = self.quad_rate // audio_decim # 32 kS/s if subdev_spec is None: subdev_spec = usrp.pick_rx_subdevice(self.u) self.subdev = usrp.selected_subdev(self.u, subdev_spec) print "Using RX d'board %s" % (self.subdev.side_and_name(),) self.u.set_mux(usrp.determine_rx_mux_value(self.u, subdev_spec)) # Create filter to get actual channel we want chan_coeffs = gr.firdes.low_pass (1.0, # gain self.if_rate, # sampling rate 8e3, # low pass cutoff freq 2e3, # width of trans. band gr.firdes.WIN_HANN) # filter type print "len(rx_chan_coeffs) =", len(chan_coeffs) # Decimating Channel filter with frequency translation # complex in and out, float taps self.ddc = gr.freq_xlating_fir_filter_ccf(if_decim, # decimation rate chan_coeffs, # taps 0, # frequency translation amount self.if_rate) # input sample rate if USE_SIMPLE_SQUELCH: self.squelch = gr.simple_squelch_cc(20) else: self.squelch = blks2.standard_squelch(self.audio_rate) # instantiate the guts of the single channel receiver self.fmrx = blks2.nbfm_rx(self.audio_rate, self.quad_rate) # audio gain / mute block self._audio_gain = gr.multiply_const_ff(1.0) # sound card as final sink audio_sink = audio.sink (int(self.audio_rate), audio_output) # now wire it all together if USE_SIMPLE_SQUELCH: self.connect (self.u, self.ddc, self.squelch, self.fmrx, self._audio_gain, audio_sink) else: self.connect (self.u, self.ddc, self.fmrx, self.squelch, self._audio_gain, audio_sink) if gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() gain = float(g[0]+g[1])/2 self.set_gain(gain) v = self.volume_range() self.set_volume((v[0]+v[1])/2) s = self.squelch_range() self.set_squelch((s[0]+s[1])/2) def volume_range(self): return (-20.0, 0.0, 0.5) def set_volume (self, vol): g = self.volume_range() self.volume = max(g[0], min(g[1], vol)) self._update_audio_gain() def _update_audio_gain(self): self._audio_gain.set_k(10**(self.volume/10)) def squelch_range(self): r = self.squelch.squelch_range() #print "squelch_range: ", r return r def set_squelch(self, threshold): #print "SQL =", threshold self.squelch.set_threshold(threshold) def threshold(self): t = self.squelch.threshold() #print "t =", t return t def set_freq(self, target_freq): """ Set the center frequency we're interested in. @param target_freq: frequency in Hz @rypte: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter in the FPGA. Finally, we feed any residual_freq to the s/w freq translator. """ r = usrp.tune(self.u, 0, self.subdev, target_freq) if r: # Use residual_freq in s/w freq translater # print "residual_freq =", r.residual_freq self.ddc.set_center_freq(-r.residual_freq) return True return False def set_gain(self, gain): self.gain = gain self.subdev.set_gain(gain) # //////////////////////////////////////////////////////////////////////// # Main # //////////////////////////////////////////////////////////////////////// if __name__ == '__main__': app = stdgui2.stdapp (my_top_block, "USRP NBFM RX") app.MainLoop ()