#!/usr/bin/env python # # Copyright 2010 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, blks2 import sys try: import scipy except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) def main(): N = 1000000 fs = 8000 freqs = [100, 200, 300, 400, 500] nchans = 7 sigs = list() fmtx = list() for fi in freqs: s = gr.sig_source_f(fs, gr.GR_SIN_WAVE, fi, 1) fm = blks2.nbfm_tx (fs, 4*fs, max_dev=10000, tau=75e-6) sigs.append(s) fmtx.append(fm) syntaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print "Synthesis Num. Taps = %d (taps per filter = %d)" % (len(syntaps), len(syntaps)/nchans) chtaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print "Channelizer Num. Taps = %d (taps per filter = %d)" % (len(chtaps), len(chtaps)/nchans) filtbank = gr.pfb_synthesis_filterbank_ccf(nchans, syntaps) channelizer = blks2.pfb_channelizer_ccf(nchans, chtaps) noise_level = 0.01 head = gr.head(gr.sizeof_gr_complex, N) noise = gr.noise_source_c(gr.GR_GAUSSIAN, noise_level) addnoise = gr.add_cc() snk_synth = gr.vector_sink_c() tb = gr.top_block() tb.connect(noise, (addnoise,0)) tb.connect(filtbank, head, (addnoise, 1)) tb.connect(addnoise, channelizer) tb.connect(addnoise, snk_synth) snk = list() for i,si in enumerate(sigs): tb.connect(si, fmtx[i], (filtbank, i)) for i in xrange(nchans): snk.append(gr.vector_sink_c()) tb.connect((channelizer, i), snk[i]) tb.run() if 1: channel = 1 data = snk[channel].data()[1000:] f1 = pylab.figure(1) s1 = f1.add_subplot(1,1,1) s1.plot(data[10000:10200] ) s1.set_title(("Output Signal from Channel %d" % channel)) fftlen = 2048 winfunc = scipy.blackman #winfunc = scipy.hamming f2 = pylab.figure(2) s2 = f2.add_subplot(1,1,1) s2.psd(data, NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen/4, window = lambda d: d*winfunc(fftlen)) s2.set_title(("Output PSD from Channel %d" % channel)) f3 = pylab.figure(3) s3 = f3.add_subplot(1,1,1) s3.psd(snk_synth.data()[1000:], NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen/4, window = lambda d: d*winfunc(fftlen)) s3.set_title("Output of Synthesis Filter") pylab.show() if __name__ == "__main__": main()