#!/usr/bin/env python # # Copyright 2004,2005,2006 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import math from gnuradio import gr from gnuradio import audio from gnuradio.eng_option import eng_option from optparse import OptionParser class ofdm_receiver(gr.hier_block): def __init__(self, fg, fft_length, symbol_length, snr): self.input = gr.add_const_cc(0) # Kluge that goes away with hier_block2 self.fg = fg cpsize = symbol_length - fft_length; SNR = 10.0**(snr/10.0) rho = SNR / (SNR + 1.0) # ML Sync # Energy Detection from ML Sync # Create a delay line delayline = [0.0 for i in range(fft_length+1)] delayline[fft_length] = 1.0 self.delay = gr.fir_filter_ccf(1,delayline) self.fg.connect(self.input, self.delay) # magnitude squared blocks self.magsqrd1 = gr.complex_to_mag_squared() self.magsqrd2 = gr.complex_to_mag_squared() self.adder = gr.add_ff() moving_sum_taps = [rho/2 for i in range(cpsize)] self.moving_sum_filter = gr.fir_filter_fff(1,moving_sum_taps) self.fg.connect(self.input,self.magsqrd1) self.fg.connect(self.delay,self.magsqrd2) self.fg.connect(self.magsqrd1,(self.adder,0)) self.fg.connect(self.magsqrd2,(self.adder,1)) self.fg.connect(self.adder,self.moving_sum_filter) # Correlation from ML Sync self.conjg = gr.conjugate_cc(); self.mixer = gr.multiply_cc(); movingsum2_taps = [1.0 for i in range(cpsize)] self.movingsum2 = gr.fir_filter_ccf(1,movingsum2_taps) # Correlator data handler self.c2mag = gr.complex_to_mag() self.angle = gr.complex_to_arg() self.fg.connect(self.input,(self.mixer,1)) self.fg.connect(self.delay,self.conjg,(self.mixer,0)) self.fg.connect(self.mixer,self.movingsum2,self.c2mag) self.fg.connect(self.movingsum2,self.angle) # ML Sync output arg, need to find maximum point of this self.diff = gr.sub_ff() self.fg.connect(self.c2mag,(self.diff,0)) self.fg.connect(self.moving_sum_filter,(self.diff,1)) #ML measurements input to sampler block and detect nco_sensitivity = 1.0/fft_length self.f2c = gr.float_to_complex() self.sampler = gr.ofdm_sampler(fft_length,symbol_length) self.pkt_detect = gr.peak_detector_ff(0.2, 0.25, 30, 0.0001) self.dpll = gr.dpll_ff(float(symbol_length),0.01) self.sample_and_hold = gr.sample_and_hold_ff() self.nco = gr.frequency_modulator_fc(nco_sensitivity) self.inv = gr.multiply_const_ff(-1) self.sigmix = gr.multiply_cc() # Mix the signal with an NCO controlled by the sync loop self.fg.connect(self.input, (self.sigmix,0)) self.fg.connect(self.nco, (self.sigmix,1)) self.fg.connect(self.sigmix, (self.sampler,0)) sample_trigger = 0 if sample_trigger: # for testing peak_null = gr.null_sink(gr.sizeof_float) data = 640*[0,] data[639] = 1 peak_trigger = gr.vector_source_f(data, True) self.fg.connect(self.pkt_detect, peak_null) self.fg.connect(peak_trigger, self.f2c, (self.sampler,1)) self.fg.connect(peak_trigger, (self.sample_and_hold,1)) # use the sync loop values to set the sampler and the NCO # self.diff = theta # self.angle = epsilon self.fg.connect(self.diff, self.pkt_detect) use_dpll = 1 if not sample_trigger: if use_dpll: self.fg.connect(self.pkt_detect, self.dpll,self.f2c, (self.sampler,1)) self.fg.connect(self.dpll, (self.sample_and_hold,1)) if not use_dpll: self.fg.connect(self.pkt_detect, self.f2c, (self.sampler,1)) self.fg.connect(self.pkt_detect, (self.sample_and_hold,1)) self.fg.connect(self.angle, (self.sample_and_hold,0)) self.fg.connect(self.sample_and_hold, self.inv, self.nco) if 0: self.fg.connect(self.diff, gr.file_sink(gr.sizeof_float, "theta_f.dat")) self.fg.connect(self.angle, gr.file_sink(gr.sizeof_float, "epsilon_f.dat")) if use_dpll: self.fg.connect(self.dpll, gr.file_sink(gr.sizeof_float, "dpll_pulses.dat")) if sample_trigger: self.fg.connect(peak_trigger, gr.file_sink(gr.sizeof_float, "peaks_f.dat")) else: self.fg.connect(self.pkt_detect, gr.file_sink(gr.sizeof_float, "peaks_f.dat")) self.fg.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "sample_and_hold_f.dat")) self.fg.connect(self.nco, gr.file_sink(gr.sizeof_gr_complex, "nco_c.dat")) self.fg.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "input_c.dat")) self.fg.connect(self.sigmix, gr.file_sink(gr.sizeof_gr_complex, "output_c.dat")) gr.hier_block.__init__(self, fg, self.input, self.sampler)