#!/usr/bin/env python # # Copyright 2007 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, usrp, eng_notation n2s = eng_notation.num_to_str # Hierarchical block implementing a USRP sink for complex floats, # with convenience functions for tuning, interpolation, etc. # class usrp_sink_c(gr.hier_block2): """ Create a USRP sink object accepting complex floats. """ def __init__(self, which=0, subdev_spec=None, if_rate=None, freq=0.0, calibration=0.0, verbose=False): # Call hierarchical block constructor gr.hier_block2.__init__(self, "usrp_sink_c", # Block typename gr.io_signature(1,1,gr.sizeof_gr_complex), # Input signature gr.io_signature(0,0,0)) # Output signature self._verbose = verbose self._u = usrp.sink_c(which) if self._verbose: print 'DAC sample rate is', n2s(self._u.dac_rate()), "sps" self.set_subdev(subdev_spec) self.set_if_rate(if_rate) self.set_calibration(calibration) self.tune(freq) self.connect(self, self._u) def set_subdev(self, subdev_spec): if subdev_spec is None: subdev_spec = self.pick_subdevice() self._subdev = usrp.selected_subdev(self._u, subdev_spec) self._u.set_mux(usrp.determine_tx_mux_value(self._u, subdev_spec)) if self._verbose: print 'TX using', self._subdev.name(), 'daughterboard' def pick_subdevice(self): """ The user didn't specify a subdevice. If there's a daughterboard on A, select A. If there's a daughterboard on B, select B. Otherwise, select A. """ if self._u.db[0][0].dbid() >= 0: # dbid is < 0 if there's no d'board or a problem return (0, 0) if self._u.db[1][0].dbid() >= 0: return (1, 0) return (0, 0) def set_if_rate(self, if_rate): # If no IF rate specified, set to maximum interpolation if if_rate is None: self._interp = 512 else: self._interp = 4*int(self._u.dac_rate()/(4.0*if_rate)+0.5) self._if_rate = self._u.dac_rate()/self._interp self._u.set_interp_rate(self._interp) if self._verbose: print "USRP interpolation rate is", self._interp print "USRP IF rate is", n2s(self._if_rate), "sps" def set_calibration(self, calibration): self._cal = calibration if self._verbose: print "Using frequency calibration offset of", n2s(calibration), "Hz" def tune(self, freq): """ Set the center frequency we're interested in. @param target_freq: frequency in Hz @type: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter. """ self._tune_result = self._u.tune(self._subdev._which, self._subdev, freq+self._cal) if self._tune_result: if self._verbose: print "Baseband frequency is", n2s(self._tune_result.baseband_freq), "Hz" print "DXC frequency is", n2s(self._tune_result.dxc_freq), "Hz" print "Center frequency is", n2s(freq), "Hz" print "Residual frequency is", n2s(self._tune_result.residual_freq), "Hz" return True return False if __name__ == '__main__': sink = usrp_sink_c(verbose=True)