#!/usr/bin/env python from gnuradio import gr from gnuradio import audio from gnuradio import trellis from gnuradio import eng_notation import math import sys import fsm_utils def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed,P): fg = gr.flow_graph () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16*P) # packet size in shorts s2fsmi=gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality s2p = gr.stream_to_streams(2,P) # serial to parallel enc = trellis.encoder_ss(f,0) # initiali state = 0 mod = gr.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add=[] noise=[] for i in range(P): add.append(gr.add_ff()) noise.append(gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)) # RX metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set. p2s = gr.streams_to_stream(2,P) # parallel to serial fsmi2s=gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() fg.connect (src,src_head,s2fsmi,s2p) for i in range(P): fg.connect ((s2p,i),(enc,i),(mod,i)) fg.connect ((mod,i),(add[i],0)) fg.connect (noise[i],(add[i],1)) fg.connect (add[i],(metrics,i)) fg.connect ((metrics,i),(va,i),(p2s,i)) fg.connect (p2s,fsmi2s,dst) fg.run() # A bit of cheating: run the program once and print the # final encoder state. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () return (ntotal,ntotal-nright) def main(args): nargs = len (args) if nargs == 3: fname=args[0] esn0_db=float(args[1]) # Es/No in dB rep=int(args[2]) # number of times the experiment is run to collect enough errors else: sys.stderr.write ('usage: test_tcm.py fsm_fname Es/No_db repetitions\n') sys.exit (1) # system parameters f=trellis.fsm(fname) # get the FSM specification from a file P=4 # how many parallel streams? Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short) bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol K=Kb/bitspersymbol # packet size in trellis steps modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations dimensionality = modulation[0] constellation = modulation[1] if len(constellation)/dimensionality != f.O(): sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n') sys.exit (1) # calculate average symbol energy Es = 0 for i in range(len(constellation)): Es = Es + constellation[i]**2 Es = Es / (len(constellation)/dimensionality) N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance tot_s=0 # total number of transmitted shorts terr_s=0 # total number of shorts in error for i in range(rep): (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i),P) # run experiment with different seed to get different noise realizations tot_s=tot_s+s terr_s=terr_s+e if (i%10==0) & (i>0): # display progress print i,s,e,tot_s,terr_s, '%e' % ((1.0*terr_s)/tot_s) # estimate of the (short or bit) error rate print tot_s,terr_s, '%e' % ((1.0*terr_s)/tot_s) if __name__ == '__main__': main (sys.argv[1:])