#!/usr/bin/env python from gnuradio import gr from gnuradio import audio from gnuradio import trellis from gnuradio import eng_notation import math import sys import random import fsm_utils def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed): fg = gr.flow_graph () # TX packet = [0]*Kb # this for loop is TOO slow!!! for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0 packet[i] = random.randint(0, 1) # random 0s and 1s src = gr.vector_source_s(packet,False) #src = gr.lfsr_32k_source_s() #src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts b2s = gr.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f,0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts s2b = gr.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits dst = gr.vector_sink_s(); #dst = gr.check_lfsr_32k_s(); #fg.connect (src,src_head,s2fsmi,enc,mod) fg.connect (src,b2s,s2fsmi,enc,mod) fg.connect (mod,(add,0)) fg.connect (noise,(add,1)) fg.connect (add,metrics) #fg.connect (metrics,va,fsmi2s,dst) fg.connect (metrics,va,fsmi2s,s2b,dst) fg.run() # A bit of cheating: run the program once and print the # final encoder state.. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() #ntotal = dst.ntotal () #nright = dst.nright () #runlength = dst.runlength () ntotal = len(packet) if len(dst.data()) != ntotal: print "Error: not enough data\n" nright = 0; # this for loop is TOO slow!!! for i in range(ntotal): if packet[i]==dst.data()[i]: nright=nright+1 #else: #print "Error in ", i return (ntotal,ntotal-nright) def main(args): nargs = len (args) if nargs == 3: fname=args[0] esn0_db=float(args[1]) # Es/No in dB rep=int(args[2]) # number of times the experiment is run to collect enough errors else: sys.stderr.write ('usage: test_tcm.py fsm_fname Es/No_db repetitions\n') sys.exit (1) # system parameters f=trellis.fsm(fname) # get the FSM specification from a file Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short) bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol K=Kb/bitspersymbol # packet size in trellis steps modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations dimensionality = modulation[0] constellation = modulation[1] if len(constellation)/dimensionality != f.O(): sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n') sys.exit (1) # calculate average symbol energy Es = 0 for i in range(len(constellation)): Es = Es + constellation[i]**2 Es = Es / (len(constellation)/dimensionality) N0=Es/pow(10.0,esn0_db/10.0); # noise variance tot_s=0 terr_s=0 for i in range(rep): (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations tot_s=tot_s+s terr_s=terr_s+e if (i%1==0) & (i>0): print i,s,e,tot_s,terr_s, '%e' % ((1.0*terr_s)/tot_s) # estimate of the (short or bit) error rate print tot_s,terr_s, '%e' % ((1.0*terr_s)/tot_s) if __name__ == '__main__': main (sys.argv[1:])