/* -*- c++ -*- */ /* * Copyright 2007,2011 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #define GR_FLOWGRAPH_DEBUG 0 gr_edge::~gr_edge() { } gr_flowgraph_sptr gr_make_flowgraph() { return gr_flowgraph_sptr(new gr_flowgraph()); } gr_flowgraph::gr_flowgraph() { } gr_flowgraph::~gr_flowgraph() { } // FIXME: move to libgruel as a utility function template static std::vector unique_vector(std::vector v) { std::vector result; std::insert_iterator > inserter(result, result.begin()); sort(v.begin(), v.end()); unique_copy(v.begin(), v.end(), inserter); return result; } void gr_flowgraph::connect(const gr_endpoint &src, const gr_endpoint &dst) { check_valid_port(src.block()->output_signature(), src.port()); check_valid_port(dst.block()->input_signature(), dst.port()); check_dst_not_used(dst); check_type_match(src, dst); // All ist klar, Herr Kommisar d_edges.push_back(gr_edge(src,dst)); } void gr_flowgraph::disconnect(const gr_endpoint &src, const gr_endpoint &dst) { for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) { if (src == p->src() && dst == p->dst()) { d_edges.erase(p); return; } } std::stringstream msg; msg << "cannot disconnect edge " << gr_edge(src, dst) << ", not found"; throw std::invalid_argument(msg.str()); } void gr_flowgraph::validate() { d_blocks = calc_used_blocks(); for (gr_basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { std::vector used_ports; int ninputs, noutputs; if (GR_FLOWGRAPH_DEBUG) std::cout << "Validating block: " << (*p) << std::endl; used_ports = calc_used_ports(*p, true); // inputs ninputs = used_ports.size(); check_contiguity(*p, used_ports, true); // inputs used_ports = calc_used_ports(*p, false); // outputs noutputs = used_ports.size(); check_contiguity(*p, used_ports, false); // outputs if (!((*p)->check_topology(ninputs, noutputs))) { std::stringstream msg; msg << "check topology failed on " << (*p) << " using ninputs=" << ninputs << ", noutputs=" << noutputs; throw std::runtime_error(msg.str()); } } } void gr_flowgraph::clear() { // Boost shared pointers will deallocate as needed d_blocks.clear(); d_edges.clear(); } void gr_flowgraph::check_valid_port(gr_io_signature_sptr sig, int port) { std::stringstream msg; if (port < 0) { msg << "negative port number " << port << " is invalid"; throw std::invalid_argument(msg.str()); } int max = sig->max_streams(); if (max != gr_io_signature::IO_INFINITE && port >= max) { msg << "port number " << port << " exceeds max of "; if (max == 0) msg << "(none)"; else msg << max-1; throw std::invalid_argument(msg.str()); } } void gr_flowgraph::check_dst_not_used(const gr_endpoint &dst) { // A destination is in use if it is already on the edge list for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) if (p->dst() == dst) { std::stringstream msg; msg << "destination already in use by edge " << (*p); throw std::invalid_argument(msg.str()); } } void gr_flowgraph::check_type_match(const gr_endpoint &src, const gr_endpoint &dst) { int src_size = src.block()->output_signature()->sizeof_stream_item(src.port()); int dst_size = dst.block()->input_signature()->sizeof_stream_item(dst.port()); if (src_size != dst_size) { std::stringstream msg; msg << "itemsize mismatch: " << src << " using " << src_size << ", " << dst << " using " << dst_size; throw std::invalid_argument(msg.str()); } } gr_basic_block_vector_t gr_flowgraph::calc_used_blocks() { gr_basic_block_vector_t tmp; // make sure free standing message blocks are included for (gr_basic_block_vector_t::iterator it=d_msgblocks.begin(); it!=d_msgblocks.end(); it++){ tmp.push_back(*it); } // Collect all blocks in the edge list for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) { tmp.push_back(p->src().block()); tmp.push_back(p->dst().block()); } return unique_vector(tmp); } std::vector gr_flowgraph::calc_used_ports(gr_basic_block_sptr block, bool check_inputs) { std::vector tmp; // Collect all seen ports gr_edge_vector_t edges = calc_connections(block, check_inputs); for (gr_edge_viter_t p = edges.begin(); p != edges.end(); p++) { if (check_inputs == true) tmp.push_back(p->dst().port()); else tmp.push_back(p->src().port()); } return unique_vector(tmp); } gr_edge_vector_t gr_flowgraph::calc_connections(gr_basic_block_sptr block, bool check_inputs) { gr_edge_vector_t result; for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) { if (check_inputs) { if (p->dst().block() == block) result.push_back(*p); } else { if (p->src().block() == block) result.push_back(*p); } } return result; // assumes no duplicates } void gr_flowgraph::check_contiguity(gr_basic_block_sptr block, const std::vector &used_ports, bool check_inputs) { std::stringstream msg; gr_io_signature_sptr sig = check_inputs ? block->input_signature() : block->output_signature(); int nports = used_ports.size(); int min_ports = sig->min_streams(); int max_ports = sig->max_streams(); if (nports == 0 && min_ports == 0) return; if (nports < min_ports) { msg << block << ": insufficient connected " << (check_inputs ? "input ports " : "output ports ") << "(" << min_ports << " needed, " << nports << " connected)"; throw std::runtime_error(msg.str()); } if (nports > max_ports && max_ports != gr_io_signature::IO_INFINITE) { msg << block << ": too many connected " << (check_inputs ? "input ports " : "output ports ") << "(" << max_ports << " allowed, " << nports << " connected)"; throw std::runtime_error(msg.str()); } if (used_ports[nports-1]+1 != nports) { for (int i = 0; i < nports; i++) { if (used_ports[i] != i) { msg << block << ": missing connection " << (check_inputs ? "to input port " : "from output port ") << i; throw std::runtime_error(msg.str()); } } } } gr_basic_block_vector_t gr_flowgraph::calc_downstream_blocks(gr_basic_block_sptr block, int port) { gr_basic_block_vector_t tmp; for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) if (p->src() == gr_endpoint(block, port)) tmp.push_back(p->dst().block()); return unique_vector(tmp); } gr_basic_block_vector_t gr_flowgraph::calc_downstream_blocks(gr_basic_block_sptr block) { gr_basic_block_vector_t tmp; for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) if (p->src().block() == block) tmp.push_back(p->dst().block()); return unique_vector(tmp); } gr_edge_vector_t gr_flowgraph::calc_upstream_edges(gr_basic_block_sptr block) { gr_edge_vector_t result; for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) if (p->dst().block() == block) result.push_back(*p); return result; // Assume no duplicates } bool gr_flowgraph::has_block_p(gr_basic_block_sptr block) { gr_basic_block_viter_t result; result = std::find(d_blocks.begin(), d_blocks.end(), block); return (result != d_blocks.end()); } gr_edge gr_flowgraph::calc_upstream_edge(gr_basic_block_sptr block, int port) { gr_edge result; for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) { if (p->dst() == gr_endpoint(block, port)) { result = (*p); break; } } return result; } std::vector gr_flowgraph::partition() { std::vector result; gr_basic_block_vector_t blocks = calc_used_blocks(); gr_basic_block_vector_t graph; while (blocks.size() > 0) { graph = calc_reachable_blocks(blocks[0], blocks); assert(graph.size()); result.push_back(topological_sort(graph)); for (gr_basic_block_viter_t p = graph.begin(); p != graph.end(); p++) blocks.erase(find(blocks.begin(), blocks.end(), *p)); } return result; } gr_basic_block_vector_t gr_flowgraph::calc_reachable_blocks(gr_basic_block_sptr block, gr_basic_block_vector_t &blocks) { gr_basic_block_vector_t result; // Mark all blocks as unvisited for (gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) (*p)->set_color(gr_basic_block::WHITE); // Recursively mark all reachable blocks reachable_dfs_visit(block, blocks); // Collect all the blocks that have been visited for (gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) if ((*p)->color() == gr_basic_block::BLACK) result.push_back(*p); return result; } // Recursively mark all reachable blocks from given block and block list void gr_flowgraph::reachable_dfs_visit(gr_basic_block_sptr block, gr_basic_block_vector_t &blocks) { // Mark the current one as visited block->set_color(gr_basic_block::BLACK); // Recurse into adjacent vertices gr_basic_block_vector_t adjacent = calc_adjacent_blocks(block, blocks); for (gr_basic_block_viter_t p = adjacent.begin(); p != adjacent.end(); p++) if ((*p)->color() == gr_basic_block::WHITE) reachable_dfs_visit(*p, blocks); } // Return a list of block adjacent to a given block along any edge gr_basic_block_vector_t gr_flowgraph::calc_adjacent_blocks(gr_basic_block_sptr block, gr_basic_block_vector_t &blocks) { gr_basic_block_vector_t tmp; // Find any blocks that are inputs or outputs for (gr_edge_viter_t p = d_edges.begin(); p != d_edges.end(); p++) { if (p->src().block() == block) tmp.push_back(p->dst().block()); if (p->dst().block() == block) tmp.push_back(p->src().block()); } return unique_vector(tmp); } gr_basic_block_vector_t gr_flowgraph::topological_sort(gr_basic_block_vector_t &blocks) { gr_basic_block_vector_t tmp; gr_basic_block_vector_t result; tmp = sort_sources_first(blocks); // Start 'em all white for (gr_basic_block_viter_t p = tmp.begin(); p != tmp.end(); p++) (*p)->set_color(gr_basic_block::WHITE); for (gr_basic_block_viter_t p = tmp.begin(); p != tmp.end(); p++) { if ((*p)->color() == gr_basic_block::WHITE) topological_dfs_visit(*p, result); } reverse(result.begin(), result.end()); return result; } gr_basic_block_vector_t gr_flowgraph::sort_sources_first(gr_basic_block_vector_t &blocks) { gr_basic_block_vector_t sources, nonsources, result; for (gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { if (source_p(*p)) sources.push_back(*p); else nonsources.push_back(*p); } for (gr_basic_block_viter_t p = sources.begin(); p != sources.end(); p++) result.push_back(*p); for (gr_basic_block_viter_t p = nonsources.begin(); p != nonsources.end(); p++) result.push_back(*p); return result; } bool gr_flowgraph::source_p(gr_basic_block_sptr block) { return (calc_upstream_edges(block).size() == 0); } void gr_flowgraph::topological_dfs_visit(gr_basic_block_sptr block, gr_basic_block_vector_t &output) { block->set_color(gr_basic_block::GREY); gr_basic_block_vector_t blocks(calc_downstream_blocks(block)); for (gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { switch ((*p)->color()) { case gr_basic_block::WHITE: topological_dfs_visit(*p, output); break; case gr_basic_block::GREY: throw std::runtime_error("flow graph has loops!"); case gr_basic_block::BLACK: continue; default: throw std::runtime_error("invalid color on block!"); } } block->set_color(gr_basic_block::BLACK); output.push_back(block); } void gr_flowgraph::add_msg_block(gr_basic_block_sptr blk){ d_msgblocks.push_back(blk); }