/************************************************************************** * Parks-McClellan algorithm for FIR filter design (C version) *------------------------------------------------- * Copyright (c) 1995,1998 Jake Janovetz (janovetz@uiuc.edu) * Copyright (c) 2004 Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA * * * Sep 1999 - Paul Kienzle (pkienzle@cs.indiana.edu) * Modified for use in octave as a replacement for the matlab function * remez.mex. In particular, magnitude responses are required for all * band edges rather than one per band, griddensity is a parameter, * and errors are returned rather than printed directly. * Mar 2000 - Kai Habel (kahacjde@linux.zrz.tu-berlin.de) * Change: ColumnVector x=arg(i).vector_value(); * to: ColumnVector x(arg(i).vector_value()); * There appear to be some problems with the routine Search. See comments * therein [search for PAK:]. I haven't looked closely at the rest * of the code---it may also have some problems. *************************************************************************/ /* * This code was extracted from octave.sf.net, and wrapped with * GNU Radio glue. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #ifndef LOCAL_BUFFER #include #define LOCAL_BUFFER(T, buf, size) \ std::vector buf ## _vector (size); \ T *buf = &(buf ## _vector[0]) #endif #define CONST const #define BANDPASS 1 #define DIFFERENTIATOR 2 #define HILBERT 3 #define NEGATIVE 0 #define POSITIVE 1 #define Pi 3.14159265358979323846 #define Pi2 (2*Pi) #define GRIDDENSITY 16 #define MAXITERATIONS 40 /******************* * CreateDenseGrid *================= * Creates the dense grid of frequencies from the specified bands. * Also creates the Desired Frequency Response function (D[]) and * the Weight function (W[]) on that dense grid * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int numtaps - Number of taps in the resulting filter * int numband - Number of bands in user specification * double bands[] - User-specified band edges [2*numband] * double des[] - Desired response per band [2*numband] * double weight[] - Weight per band [numband] * int symmetry - Symmetry of filter - used for grid check * int griddensity * * OUTPUT: * ------- * int gridsize - Number of elements in the dense frequency grid * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the dense grid [gridsize] *******************/ static void CreateDenseGrid (int r, int numtaps, int numband, const double bands[], const double des[], const double weight[], int gridsize, double Grid[], double D[], double W[], int symmetry, int griddensity) { int i, j, k, band; double delf, lowf, highf, grid0; delf = 0.5/(griddensity*r); /* * For differentiator, hilbert, * symmetry is odd and Grid[0] = max(delf, bands[0]) */ grid0 = (symmetry == NEGATIVE) && (delf > bands[0]) ? delf : bands[0]; j=0; for (band=0; band < numband; band++) { lowf = (band==0 ? grid0 : bands[2*band]); highf = bands[2*band + 1]; k = (int)((highf - lowf)/delf + 0.5); /* .5 for rounding */ for (i=0; i (0.5 - delf)) && (numtaps % 2)) { Grid[gridsize-1] = 0.5-delf; } } /******************** * InitialGuess *============== * Places Extremal Frequencies evenly throughout the dense grid. * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int gridsize - Number of elements in the dense frequency grid * * OUTPUT: * ------- * int Ext[] - Extremal indexes to dense frequency grid [r+1] ********************/ static void InitialGuess (int r, int Ext[], int gridsize) { int i; for (i=0; i<=r; i++) Ext[i] = i * (gridsize-1) / r; } /*********************** * CalcParms *=========== * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int Ext[] - Extremal indexes to dense frequency grid [r+1] * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the dense grid [gridsize] * * OUTPUT: * ------- * double ad[] - 'b' in Oppenheim & Schafer [r+1] * double x[] - [r+1] * double y[] - 'C' in Oppenheim & Schafer [r+1] ***********************/ static void CalcParms (int r, int Ext[], double Grid[], double D[], double W[], double ad[], double x[], double y[]) { int i, j, k, ld; double sign, xi, delta, denom, numer; /* * Find x[] */ for (i=0; i<=r; i++) x[i] = cos(Pi2 * Grid[Ext[i]]); /* * Calculate ad[] - Oppenheim & Schafer eq 7.132 */ ld = (r-1)/15 + 1; /* Skips around to avoid round errors */ for (i=0; i<=r; i++) { denom = 1.0; xi = x[i]; for (j=0; j0.0) && (E[0]>E[1])) || ((E[0]<0.0) && (E[0]=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) || ((E[i]<=E[i-1]) && (E[i]= 2*r) return -3; foundExt[k++] = i; } } /* * Check for extremum at 0.5 */ j = gridsize-1; if (((E[j]>0.0) && (E[j]>E[j-1])) || ((E[j]<0.0) && (E[j]= 2*r) return -3; foundExt[k++] = j; } // PAK: we sometimes get not enough extremal frequencies if (k < r+1) return -2; /* * Remove extra extremals */ extra = k - (r+1); assert(extra >= 0); while (extra > 0) { if (E[foundExt[0]] > 0.0) up = 1; /* first one is a maxima */ else up = 0; /* first one is a minima */ l=0; alt = 1; for (j=1; j 0.0)) up = 1; /* switch to a maxima */ else { alt = 0; // PAK: break now and you will delete the smallest overall // extremal. If you want to delete the smallest of the // pair of non-alternating extremals, then you must do: // // if (fabs(E[foundExt[j]]) < fabs(E[foundExt[j-1]])) l=j; // else l=j-1; break; /* Ooops, found two non-alternating */ } /* extrema. Delete smallest of them */ } /* if the loop finishes, all extrema are alternating */ /* * If there's only one extremal and all are alternating, * delete the smallest of the first/last extremals. */ if ((alt) && (extra == 1)) { if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]])) /* Delete last extremal */ l = k-1; // PAK: changed from l = foundExt[k-1]; else /* Delete first extremal */ l = 0; // PAK: changed from l = foundExt[0]; } for (j=l; j max) max = current; } return (((max-min)/max) < 0.0001); } /******************** * remez *======= * Calculates the optimal (in the Chebyshev/minimax sense) * FIR filter impulse response given a set of band edges, * the desired reponse on those bands, and the weight given to * the error in those bands. * * INPUT: * ------ * int numtaps - Number of filter coefficients * int numband - Number of bands in filter specification * double bands[] - User-specified band edges [2 * numband] * double des[] - User-specified band responses [2 * numband] * double weight[] - User-specified error weights [numband] * int type - Type of filter * * OUTPUT: * ------- * double h[] - Impulse response of final filter [numtaps] * returns - true on success, false on failure to converge ********************/ static int remez (double h[], int numtaps, int numband, const double bands[], const double des[], const double weight[], int type, int griddensity) { double *Grid, *W, *D, *E; int i, iter, gridsize, r, *Ext; double *taps, c; double *x, *y, *ad; int symmetry; if (type == BANDPASS) symmetry = POSITIVE; else symmetry = NEGATIVE; r = numtaps/2; /* number of extrema */ if ((numtaps%2) && (symmetry == POSITIVE)) r++; /* * Predict dense grid size in advance for memory allocation * .5 is so we round up, not truncate */ gridsize = 0; for (i=0; i 0.0001) W[i] = W[i]/Grid[i]; } } /* * For odd or Negative symmetry filters, alter the * D[] and W[] according to Parks McClellan */ if (symmetry == POSITIVE) { if (numtaps % 2 == 0) { for (i=0; i gr_remez (int order, const std::vector &arg_bands, const std::vector &arg_response, const std::vector &arg_weight, const std::string filter_type, int grid_density ) throw (std::runtime_error) { int numtaps = order + 1; if (numtaps < 4) punt ("gr_remez: number of taps must be >= 3"); int numbands = arg_bands.size () / 2; LOCAL_BUFFER (double, bands, numbands * 2); if (numbands < 1 || arg_bands.size () % 2 == 1) punt ("gr_remez: must have an even number of band edges"); for (unsigned int i = 1; i < arg_bands.size (); i++){ if (arg_bands[i] < arg_bands[i-1]) punt ("gr_remez: band edges must be nondecreasing"); } if (arg_bands[0] < 0 || arg_bands[arg_bands.size () - 1] > 1) punt ("gr_remez: band edges must be in the range [0,1]"); // Divide by 2 to fit with the implementation that uses a // sample rate of [0, 0.5] instead of [0, 1.0] for (int i = 0; i < 2 * numbands; i++) bands[i] = arg_bands[i] / 2; LOCAL_BUFFER (double, response, numbands * 2); if (arg_response.size () != arg_bands.size ()) punt ("gr_remez: must have one response magnitude for each band edge"); for (int i = 0; i < 2 * numbands; i++) response[i] = arg_response[i]; LOCAL_BUFFER (double, weight, numbands); for (int i = 0; i < numbands; i++) weight[i] = 1.0; if (arg_weight.size () != 0){ if ((int) arg_weight.size () != numbands) punt ("gr_remez: need one weight for each band [=length(band)/2]"); for (int i = 0; i < numbands; i++) weight[i] = arg_weight [i]; } int itype = 0; if (filter_type == "bandpass") itype = BANDPASS; else if (filter_type == "differentiator") itype = DIFFERENTIATOR; else if (filter_type == "hilbert") itype = HILBERT; else punt ("gr_remez: unknown ftype '" + filter_type + "'"); if (grid_density < 16) punt ("gr_remez: grid_density is too low; must be >= 16"); LOCAL_BUFFER (double, coeff, numtaps + 5); // FIXME why + 5? int err = remez (coeff, numtaps, numbands, bands, response, weight, itype, grid_density); if (err == -1) punt ("gr_remez: failed to converge"); if (err == -2) punt ("gr_remez: insufficient extremals -- cannot continue"); if (err == -3) punt ("gr_remez: too many extremals -- cannot continue"); return std::vector (&coeff[0], &coeff[numtaps]); } #if 0 /* == Octave interface starts here ====================================== */ DEFUN_DLD (remez, args, , "b = remez(n, f, a [, w] [, ftype] [, griddensity])\n\ Parks-McClellan optimal FIR filter design.\n\ n gives the number of taps in the returned filter\n\ f gives frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]\n\ a gives amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]\n\ w gives weighting applied to each band\n\ ftype is 'bandpass', 'hilbert' or 'differentiator'\n\ griddensity determines how accurately the filter will be\n\ constructed. The minimum value is 16, but higher numbers are\n\ slower to compute.\n\ \n\ Frequency is in the range (0, 1), with 1 being the nyquist frequency") { octave_value_list retval; int i; int nargin = args.length(); if (nargin < 3 || nargin > 6) { print_usage("remez"); return retval; } int numtaps = NINT (args(0).double_value()) + 1; // #coeff = filter order+1 if (numtaps < 4) { error("remez: number of taps must be an integer greater than 3"); return retval; } ColumnVector o_bands(args(1).vector_value()); int numbands = o_bands.length()/2; OCTAVE_LOCAL_BUFFER(double, bands, numbands*2); if (numbands < 1 || o_bands.length()%2 == 1) { error("remez: must have an even number of band edges"); return retval; } for (i=1; i < o_bands.length(); i++) { if (o_bands(i) 1) { error("band edges must be in the range [0,1]"); return retval; } for(i=0; i < 2*numbands; i++) bands[i] = o_bands(i)/2.0; ColumnVector o_response(args(2).vector_value()); OCTAVE_LOCAL_BUFFER (double, response, numbands*2); if (o_response.length() != o_bands.length()) { error("remez: must have one response magnitude for each band edge"); return retval; } for(i=0; i < 2*numbands; i++) response[i] = o_response(i); std::string stype = std::string("bandpass"); int density = 16; OCTAVE_LOCAL_BUFFER (double, weight, numbands); for (i=0; i < numbands; i++) weight[i] = 1.0; if (nargin > 3) { if (args(3).is_real_matrix()) { ColumnVector o_weight(args(3).vector_value()); if (o_weight.length() != numbands) { error("remez: need one weight for each band [=length(band)/2]"); return retval; } for (i=0; i < numbands; i++) weight[i] = o_weight(i); } else if (args(3).is_string()) stype = args(3).string_value(); else if (args(3).is_real_scalar()) density = NINT(args(3).double_value()); else { error("remez: incorrect argument list"); return retval; } } if (nargin > 4) { if (args(4).is_string() && !args(3).is_string()) stype = args(4).string_value(); else if (args(4).is_real_scalar() && !args(3).is_real_scalar()) density = NINT(args(4).double_value()); else { error("remez: incorrect argument list"); return retval; } } if (nargin > 5) { if (args(5).is_real_scalar() && !args(4).is_real_scalar() && !args(3).is_real_scalar()) density = NINT(args(4).double_value()); else { error("remez: incorrect argument list"); return retval; } } int itype; if (stype == "bandpass") itype = BANDPASS; else if (stype == "differentiator") itype = DIFFERENTIATOR; else if (stype == "hilbert") itype = HILBERT; else { error("remez: unknown ftype '%s'", stype.data()); return retval; } if (density < 16) { error("remez: griddensity is too low; must be greater than 16"); return retval; } OCTAVE_LOCAL_BUFFER (double, coeff, numtaps+5); int err = remez(coeff,numtaps,numbands,bands,response,weight,itype,density); if (err == -1) warning("remez: -- failed to converge -- returned filter may be bad."); else if (err == -2) { error("remez: insufficient extremals--cannot continue"); return retval; } else if (err == -3) { error("remez: too many extremals--cannot continue"); return retval; } ColumnVector h(numtaps); while(numtaps--) h(numtaps) = coeff[numtaps]; return octave_value(h); } /* %!test %! b = [ %! 0.0415131831103279 %! 0.0581639884202646 %! -0.0281579212691008 %! -0.0535575358002337 %! -0.0617245915143180 %! 0.0507753178978075 %! 0.2079018331396460 %! 0.3327160895375440 %! 0.3327160895375440 %! 0.2079018331396460 %! 0.0507753178978075 %! -0.0617245915143180 %! -0.0535575358002337 %! -0.0281579212691008 %! 0.0581639884202646 %! 0.0415131831103279]; %! assert(remez(15,[0,0.3,0.4,1],[1,1,0,0]),b,1e-14); */ #endif