/* -*- c++ -*- */ /* * Copyright 2003,2005,2008 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * mathematical odds and ends. */ #ifndef _GR_MATH_H_ #define _GR_MATH_H_ #include static inline bool gr_is_power_of_2(long x) { return x != 0 && (x & (x-1)) == 0; } long gr_gcd (long m, long n); // returns a non-zero value if value is "not-a-number" (NaN), and 0 otherwise int gr_isnan (double value); // returns a non-zero value if the value of x has its sign bit set. // // This is not the same as `x < 0.0', because IEEE 754 floating point // allows zero to be signed. The comparison `-0.0 < 0.0' is false, but // `gr_signbit (-0.0)' will return a nonzero value. int gr_signbit (double x); /*! * \brief Fast arc tangent using table lookup and linear interpolation * \ingroup misc * * \param y component of input vector * \param x component of input vector * \returns float angle angle of vector (x, y) in radians * * This function calculates the angle of the vector (x,y) based on a * table lookup and linear interpolation. The table uses a 256 point * table covering -45 to +45 degrees and uses symetry to determine the * final angle value in the range of -180 to 180 degrees. Note that * this function uses the small angle approximation for values close * to zero. This routine calculates the arc tangent with an average * error of +/- 0.045 degrees. */ float gr_fast_atan2f(float y, float x); static inline float gr_fast_atan2f(gr_complex z) { return gr_fast_atan2f(z.imag(), z.real()); } /* This bounds x by +/- clip without a branch */ static inline float gr_branchless_clip(float x, float clip) { float x1 = fabsf(x+clip); float x2 = fabsf(x-clip); x1 -= x2; return 0.5*x1; } static inline float gr_clip(float x, float clip) { float y = x; if(x > clip) y = clip; else if(x < -clip) y = -clip; return y; } // Slicer Functions static inline unsigned int gr_binary_slicer(float x) { if(x >= 0) return 1; else return 0; } static inline unsigned int gr_quad_45deg_slicer(float r, float i) { unsigned int ret = 0; if((r >= 0) && (i >= 0)) ret = 0; else if((r < 0) && (i >= 0)) ret = 1; else if((r < 0) && (i < 0)) ret = 2; else ret = 3; return ret; } static inline unsigned int gr_quad_0deg_slicer(float r, float i) { unsigned int ret = 0; if(fabsf(r) > fabsf(i)) { if(r > 0) ret = 0; else ret = 2; } else { if(i > 0) ret = 1; else ret = 3; } return ret; } static inline unsigned int gr_quad_45deg_slicer(gr_complex x) { return gr_quad_45deg_slicer(x.real(), x.imag()); } static inline unsigned int gr_quad_0deg_slicer(gr_complex x) { return gr_quad_0deg_slicer(x.real(), x.imag()); } // Branchless Slicer Functions static inline unsigned int gr_branchless_binary_slicer(float x) { return (x >= 0); } static inline unsigned int gr_branchless_quad_0deg_slicer(float r, float i) { unsigned int ret = 0; ret = (fabsf(r) > fabsf(i)) * (((r < 0) << 0x1)); // either 0 (00) or 2 (10) ret |= (fabsf(i) > fabsf(r)) * (((i < 0) << 0x1) | 0x1); // either 1 (01) or 3 (11) return ret; } static inline unsigned int gr_branchless_quad_0deg_slicer(gr_complex x) { return gr_branchless_quad_0deg_slicer(x.real(), x.imag()); } static inline unsigned int gr_branchless_quad_45deg_slicer(float r, float i) { char ret = (r <= 0); ret |= ((i <= 0) << 1); return (ret ^ ((ret & 0x2) >> 0x1)); } static inline unsigned int gr_branchless_quad_45deg_slicer(gr_complex x) { return gr_branchless_quad_45deg_slicer(x.real(), x.imag()); } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p x rounded down to a multiple of \p pow2. */ static inline size_t gr_p2_round_down(size_t x, size_t pow2) { return x & -pow2; } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p x rounded up to a multiple of \p pow2. */ static inline size_t gr_p2_round_up(size_t x, size_t pow2) { return gr_p2_round_down(x + pow2 - 1, pow2); } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p x modulo \p pow2. */ static inline size_t gr_p2_modulo(size_t x, size_t pow2) { return x & (pow2 - 1); } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p pow2 - (\p x modulo \p pow2). */ static inline size_t gr_p2_modulo_neg(size_t x, size_t pow2) { return pow2 - gr_p2_modulo(x, pow2); } #endif /* _GR_MATH_H_ */