/* -*- c++ -*- */ /* * Copyright 2004,2007,2008,2010 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <gr_fft_vcc_fftw.h> #include <gr_io_signature.h> #include <gri_fft.h> #include <math.h> #include <string.h> gr_fft_vcc_sptr gr_make_fft_vcc_fftw (int fft_size, bool forward, const std::vector<float> &window, bool shift, int nthreads) { return gnuradio::get_initial_sptr(new gr_fft_vcc_fftw (fft_size, forward, window, shift, nthreads)); } gr_fft_vcc_fftw::gr_fft_vcc_fftw (int fft_size, bool forward, const std::vector<float> &window, bool shift, int nthreads) : gr_fft_vcc("fft_vcc_fftw", fft_size, forward, window, shift) { d_fft = new gri_fft_complex (d_fft_size, forward, nthreads); } gr_fft_vcc_fftw::~gr_fft_vcc_fftw () { delete d_fft; } void gr_fft_vcc_fftw::set_nthreads(int n) { d_fft->set_nthreads(n); } int gr_fft_vcc_fftw::nthreads() const { return d_fft->nthreads(); } int gr_fft_vcc_fftw::work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; unsigned int input_data_size = input_signature()->sizeof_stream_item (0); unsigned int output_data_size = output_signature()->sizeof_stream_item (0); int count = 0; while (count++ < noutput_items){ // copy input into optimally aligned buffer if (d_window.size()){ gr_complex *dst = d_fft->get_inbuf(); if(!d_forward && d_shift){ unsigned int offset = (!d_forward && d_shift)?(d_fft_size/2):0; int fft_m_offset = d_fft_size - offset; for (unsigned int i = 0; i < offset; i++) // apply window dst[i+fft_m_offset] = in[i] * d_window[i]; for (unsigned int i = offset; i < d_fft_size; i++) // apply window dst[i-offset] = in[i] * d_window[i]; } else { for (unsigned int i = 0; i < d_fft_size; i++) // apply window dst[i] = in[i] * d_window[i]; } } else { if(!d_forward && d_shift) { // apply an ifft shift on the data gr_complex *dst = d_fft->get_inbuf(); unsigned int len = (unsigned int)(floor(d_fft_size/2.0)); // half length of complex array memcpy(&dst[0], &in[len], sizeof(gr_complex)*(d_fft_size - len)); memcpy(&dst[d_fft_size - len], &in[0], sizeof(gr_complex)*len); } else { memcpy (d_fft->get_inbuf(), in, input_data_size); } } // compute the fft d_fft->execute (); // copy result to our output if(d_forward && d_shift) { // apply a fft shift on the data unsigned int len = (unsigned int)(ceil(d_fft_size/2.0)); memcpy(&out[0], &d_fft->get_outbuf()[len], sizeof(gr_complex)*(d_fft_size - len)); memcpy(&out[d_fft_size - len], &d_fft->get_outbuf()[0], sizeof(gr_complex)*len); } else { memcpy (out, d_fft->get_outbuf (), output_data_size); } in += d_fft_size; out += d_fft_size; } return noutput_items; }