<?xml version="1.0" encoding="ISO-8859-1"?>
<example id="fm_demod_ex"><title>Broadcast FM Receiver</title>
<programlisting>
#!/usr/bin/env python

from gnuradio import gr
from gnuradio import audio
from gnuradio import mc4020
import sys

def high_speed_adc (fg, input_rate):
    # return gr.file_source (gr.sizeof_short, "dummy.dat", False)
    return mc4020.source (input_rate, mc4020.MCC_CH3_EN | mc4020.MCC_ALL_1V)

#
# return a gr.flow_graph
#
def build_graph (freq1, freq2):
    input_rate = 20e6
    cfir_decimation = 125
    audio_decimation = 5

    quad_rate = input_rate / cfir_decimation
    audio_rate = quad_rate / audio_decimation

    fg = gr.flow_graph ()
    
    # use high speed ADC as input source
    src = high_speed_adc (fg, input_rate)
    
    # compute FIR filter taps for channel selection
    channel_coeffs = \
      gr.firdes.low_pass (1.0,          # gain
                          input_rate,   # sampling rate
                          250e3,        # low pass cutoff freq
                          8*100e3,      # width of trans. band
                          gr.firdes.WIN_HAMMING)

    # input: short; output: complex
    chan_filter1 = \
      gr.freq_xlating_fir_filter_scf (cfir_decimation,
                                      channel_coeffs,
                                      freq1,        # 1st station freq
                                      input_rate)
    
    (head1, tail1) = build_pipeline (fg, quad_rate, audio_decimation)
    
    # sound card as final sink
    audio_sink = audio.sink (int (audio_rate))

    # now wire it all together
    fg.connect (src, chan_filter1)
    fg.connect (chan_filter1, head1)
    fg.connect (tail1, (audio_sink, 0))

    return fg

def build_pipeline (fg, quad_rate, audio_decimation):
    '''Given a flow_graph, fg, construct a pipeline
    for demodulating a broadcast FM signal.  The
    input is the downconverted complex baseband
    signal. The output is the demodulated audio.

    build_pipeline returns a two element tuple
    containing the input and output endpoints.
    '''
    fm_demod_gain = 2200.0/32768.0
    audio_rate = quad_rate / audio_decimation
    volume = 1.0

    # input: complex; output: float
    fm_demod = gr.quadrature_demod_cf (volume*fm_demod_gain)

    # compute FIR filter taps for audio filter
    width_of_transition_band = audio_rate / 32
    audio_coeffs = gr.firdes.low_pass (1.0,            # gain
                                       quad_rate,      # sampling rate
                                       audio_rate/2 - width_of_transition_band,
                                       width_of_transition_band,
                                       gr.firdes.WIN_HAMMING)

    # input: float; output: float
    audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)

    fg.connect (fm_demod, audio_filter)
    return ((fm_demod, 0), (audio_filter, 0))
    

def main (args):
    nargs = len (args)
    if nargs == 1:
        # get station frequency from command line
        freq1 = float (args[0]) * 1e6
    else:
        sys.stderr.write ('usage: fm_demod freq\n')
        sys.exit (1)

    # connect to RF front end
    rf_front_end = gr.microtune_4937_eval_board ()
    if not rf_front_end.board_present_p ():
        raise IOError, 'RF front end not found'

    # set front end gain
    rf_front_end.set_AGC (300)

    # determine the front end's "Intermediate Frequency"
    IF_freq = rf_front_end.get_output_freq () # 5.75e6

    # Tell the front end to tune to freq1.  
    # I.e., freq1 is translated down to the IF frequency
    rf_front_end.set_RF_freq (freq1)

    # build the flow graph
    fg = build_graph (IF_freq, None)
    
    fg.start ()        # fork thread(s) and return
    raw_input ('Press Enter to quit: ')
    fg.stop ()

if __name__ == '__main__':
    main (sys.argv[1:])
</programlisting>
</example>