From f919f9dcbb54a08e6e26d6c229ce92fb784fa1b2 Mon Sep 17 00:00:00 2001 From: Tom Rondeau Date: Fri, 13 Apr 2012 18:36:53 -0400 Subject: Removed whitespace and added dtools/bin/remove-whitespace as a tool to do this in the future. The sed script was provided by Moritz Fischer. --- gr-trellis/src/examples/python/fsm_utils.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'gr-trellis/src/examples/python/fsm_utils.py') diff --git a/gr-trellis/src/examples/python/fsm_utils.py b/gr-trellis/src/examples/python/fsm_utils.py index e9243f899..06855ea77 100755 --- a/gr-trellis/src/examples/python/fsm_utils.py +++ b/gr-trellis/src/examples/python/fsm_utils.py @@ -72,7 +72,7 @@ def base2dec(s,base): # to channel inputs corresponding to a channel 'channel' and a modulation # 'mod'. Optional normalization of channel to unit energy. # This table is used by the 'metrics' block to translate -# channel outputs to metrics for use with the Viterbi algorithm. +# channel outputs to metrics for use with the Viterbi algorithm. # Limitations: currently supports only one-dimensional modulations. ###################################################################### def make_isi_lookup(mod,channel,normalize): @@ -102,7 +102,7 @@ def make_isi_lookup(mod,channel,normalize): ###################################################################### # Automatically generate the signals appropriate for CPM -# decomposition. +# decomposition. # This decomposition is based on the paper by B. Rimoldi # "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988 # See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf @@ -118,7 +118,7 @@ def make_cpm_signals(K,P,M,L,q,frac): for m in range(L): qq=qq + q[m*Q:m*Q+Q] w=math.pi*h*(M-1)*t-2*math.pi*h*(M-1)*qq+math.pi*h*(L-1)*(M-1) - + X=(M**L)*P PSI=numpy.empty((X,Q)) for x in range(X): @@ -133,9 +133,9 @@ def make_cpm_signals(K,P,M,L,q,frac): PSI = numpy.transpose(PSI) SS=numpy.exp(1j*PSI) # contains all signals as columns #print SS - - # Now we need to orthogonalize the signals + + # Now we need to orthogonalize the signals F = scipy.linalg.orth(SS) # find an orthonormal basis for SS #print numpy.dot(numpy.transpose(F.conjugate()),F) # check for orthonormality S = numpy.dot(numpy.transpose(F.conjugate()),SS) @@ -162,11 +162,11 @@ def make_cpm_signals(K,P,M,L,q,frac): #print Ff Sf = S[Esi[0:v0+1]] #print Sf - + return (f0,SS,S,F,Sf,Ff,N) #return f0 - + -- cgit