diff options
Diffstat (limited to 'usrp2')
-rw-r--r-- | usrp2/firmware/apps/Makefile.am | 4 | ||||
-rw-r--r-- | usrp2/firmware/lib/Makefile.am | 37 | ||||
-rw-r--r-- | usrp2/firmware/lib/db_bitshark_rx.c | 286 | ||||
-rw-r--r-- | usrp2/firmware/lib/db_bitshark_rx.h | 46 | ||||
-rw-r--r-- | usrp2/firmware/lib/db_init_bitshark_rx.c | 401 |
5 files changed, 774 insertions, 0 deletions
diff --git a/usrp2/firmware/apps/Makefile.am b/usrp2/firmware/apps/Makefile.am index 00f682fc7..2cbadd1ff 100644 --- a/usrp2/firmware/apps/Makefile.am +++ b/usrp2/firmware/apps/Makefile.am @@ -47,6 +47,7 @@ noinst_PROGRAMS = \ txrx \ txrx_wbx \ txrx_xcvr \ + txrx_bitshark_rx \ factory_test \ burnrev30 \ burnrev31 \ @@ -64,6 +65,7 @@ noinst_PROGRAMS = \ # tx_drop2_SOURCES = tx_drop2.c app_common.c txrx_SOURCES = txrx.c app_common_v2.c txrx_wbx_SOURCES = txrx.c app_common_v2.c +txrx_bitshark_rx_SOURCES = txrx.c app_common_v2.c txrx_xcvr_SOURCES = txrx.c app_common_v2.c factory_test_SOURCES = factory_test.c app_common_v2.c eth_serdes_SOURCES = eth_serdes.c app_passthru_v2.c @@ -75,6 +77,8 @@ txrx_wbx_LDADD = ../lib/libu2fw_wbx.a txrx_xcvr_LDADD = ../lib/libu2fw_xcvr.a +txrx_bitshark_rx_LDADD = ../lib/libu2fw_burx.a + noinst_HEADERS = \ app_common_v2.h \ app_passthru_v2.h \ diff --git a/usrp2/firmware/lib/Makefile.am b/usrp2/firmware/lib/Makefile.am index 0a7d5c39b..0069c93eb 100644 --- a/usrp2/firmware/lib/Makefile.am +++ b/usrp2/firmware/lib/Makefile.am @@ -20,6 +20,7 @@ include $(top_srcdir)/Makefile.common noinst_LIBRARIES = \ libu2fw.a \ libu2fw_wbx.a \ + libu2fw_burx.a \ libu2fw_xcvr.a @@ -99,6 +100,41 @@ libu2fw_wbx_a_SOURCES = \ spi.c \ u2_init.c +libu2fw_burx_a_SOURCES = \ + abort.c \ + ad9510.c \ + ad9777.c \ + bsm12.c \ + buffer_pool.c \ + clocks.c \ + db_basic.c \ + db_bitshark_rx.c \ + db_init_bitshark_rx.c \ + dbsm.c \ + eeprom.c \ + ethernet.c \ + eth_mac.c \ + _exit.c \ + exit.c \ + hal_io.c \ + hal_uart.c \ + i2c.c \ + lsadc.c \ + lsdac.c \ + mdelay.c \ + memcpy_wa.c \ + memset_wa.c \ + nonstdio.c \ + pic.c \ + print_mac_addr.c \ + print_rmon_regs.c \ + print_fxpt.c \ + print_buffer.c \ + printf.c \ + sd.c \ + spi.c \ + u2_init.c + libu2fw_xcvr_a_SOURCES = \ abort.c \ ad9510.c \ @@ -149,6 +185,7 @@ noinst_HEADERS = \ db.h \ db_base.h \ db_wbxng.h \ + db_bitshark_rx.h dbsm.h \ eth_mac.h \ eth_mac_regs.h \ diff --git a/usrp2/firmware/lib/db_bitshark_rx.c b/usrp2/firmware/lib/db_bitshark_rx.c new file mode 100644 index 000000000..30d457f02 --- /dev/null +++ b/usrp2/firmware/lib/db_bitshark_rx.c @@ -0,0 +1,286 @@ +/* + * Copyright 2010 Free Software Foundation, Inc. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + * + */ + +#include "db_bitshark_rx.h" +#include <memory_map.h> +#include <db_base.h> +#include <hal_io.h> +#include <mdelay.h> +#include <lsdac.h> +#include <clocks.h> +#include <stdio.h> +#include <stdint.h> +#include <string.h> +#include <i2c.h> + +/* Note: Thie general structure of this file is based on the db_wbxng.c + codebase for the wbx daughterboard. */ + +/* The following defines specify the address map provided by the + Bitshark USRP Rx (BURX) board. These registers are all accessed over I2C. */ +#define RF_CENTER_FREQ_REG 0x00 +#define RF_CHAN_FILTER_BW_REG 0x01 +#define RF_GAIN_REG 0x02 +#define BB_GAIN_REG 0x03 +#define ADF4350_REG 0x10 +#define SKY73202_REG 0x11 +#define CLOCK_SCHEME_REG 0x20 + +/* The following table lists the registers provided by the Bitshark board + that are accessible over I2C: + -------------------------------------------------------- + |RegAddr: 0x00-RF Center Freq register | + |4-bytes 0x00| + |4-byte unsigned RF center freq (in KHz)| + |RegAddr: 0x01-RF channel filter bandwidth register | + |4-bytes 0x00| + |4-byte unsigned RF channel filter bw (in KHz)| + |RegAddr: 0x02-RF gain register | + |7-bytes 0x00| + |1-byte signed RF gain (in dB)| + |RegAddr: 0x03-Baseband gain register | + |4-bytes 0x00| + |4-byte signed baseband filter gain (in dB)| + |RegAddr: 0x10-ADF4350 register | + |4-bytes 0x00| + |4-byte ADF4350 register value (actual ADF4350 reg addr embedded + within 4-byte value)| + |RegAddr: 0x11-SKY73202 register | + |5-bytes 0x00| + |1-byte reg 0 of SKY73202 | + |1-byte reg 1 of SKY73202 | + |1-byte reg 2 of SKY73202 | + |RegAddr: 0x20-Clock Scheme | + |3-bytes 0x00| + |1-byte indicating clocking scheme: + -0x00 -> BURX local TCXO off, BURX accepts ref clock from + USRP2 (freq of USRP2's ref clock specified in bytes 2-5) + -0x01 -> BURX local TCXO on, BURX uses its local TCXO as its ref + clock, TCXO signal output for use as phase lock for USRP2 | + |4-byte USRP2 ref clock freq in hz (only needed if byte 1 set to 0x00) | + + --------------------------------------------------------------------------- + + As an example, lets say the client wants to set an RF center freq of + 1000 MHz. In KHz, this translates to 1000000 (resolution is only down to + steps of 1 KHz), which is 0x000F4240 in hex. So the complete 9-byte I2C + sequence that the client should send is as follows: + byte 0: 0x00-register 0x00 is the target of the write operation + bytes 1-4: 0x00 (padding) + byte 5: 0x00 (MSB of the 1000000 KHz value, in hex) + byte 6: 0x0F + byte 7: 0x42 + byte 8: 0x40 (LSB of the 1000000 KHz value, in hex) + + How about another example...lets say the client wants to setup the clock + scheme to use scheme #1 where the 26 MHz TCXO on the BURX board is enabled, + and is provided to the USRP2 for it to phase lock to it as an external ref. + 26 MHz (i.e. 26 million), in hex, is 0x18CBA80. + So the complete 9-byte I2C sequence that the client should send is as follows: + byte 0: 0x20-register 0x20 is the target of the write operation + bytes 1-3: 0x00 (padding) + byte 4: 0x01 (indicating that clock scheme #1 is wanted) + byte 5: 0x01 (MSB of the BURX ref clk freq) + byte 6: 0x8C + byte 7: 0xBA + byte 8: 0x80 (LSB of the BURX ref clk freq) + + Note: The endian-ness of 4-byte values used in I2C cmds is different on + USRP2 compared to USRP1. + +*/ + +#define NUM_BYTES_IN_I2C_CMD 9 +#define I2C_ADDR 0x47 + +bool bitshark_rx_init(struct db_base *dbb); +bool bitshark_rx_set_freq(struct db_base *dbb, u2_fxpt_freq_t freq, u2_fxpt_freq_t *dc); +bool bitshark_rx_set_gain(struct db_base *dbb, u2_fxpt_gain_t gain); +bool bitshark_rx_set_bw(struct db_base *dbb, uint16_t bw); + +static bool set_clock_scheme(uint8_t clock_scheme, uint32_t ref_clk_freq); + +/* + * The class instances + */ +struct db_bitshark_rx db_bitshark_rx = { + .base.dbid = 0x0070, + .base.is_tx = false, + .base.output_enables = 0x0000, + .base.used_pins = 0x0000, + .base.freq_min = U2_DOUBLE_TO_FXPT_FREQ(300e6), + .base.freq_max = U2_DOUBLE_TO_FXPT_FREQ(4000e6), + .base.gain_min = U2_DOUBLE_TO_FXPT_GAIN(0), + .base.gain_max = U2_DOUBLE_TO_FXPT_GAIN(42), + .base.gain_step_size = U2_DOUBLE_TO_FXPT_GAIN(6), + .base.is_quadrature = true, + .base.i_and_q_swapped = true, + .base.spectrum_inverted = false, + .base.default_lo_offset = U2_DOUBLE_TO_FXPT_FREQ(0), + .base.init = bitshark_rx_init, + .base.set_freq = bitshark_rx_set_freq, + .base.set_gain = bitshark_rx_set_gain, + .base.set_tx_enable = 0, + .base.atr_mask = 0x0000, + .base.atr_txval = 0, + .base.atr_rxval = 0, + .base.set_antenna = 0, + .extra.bw_min = 660, /* in KHz, so 660 KHz */ + .extra.bw_max = 56000, /* in KHz, so 56 MHz */ + .extra.set_bw = bitshark_rx_set_bw +}; + +bool +bitshark_rx_init(struct db_base *dbb) +{ + struct db_bitshark_rx_dummy *db = (struct db_bitshark_rx_dummy *) dbb; + + clocks_enable_rx_dboard(true, 0); + /* hal_gpio_write( GPIO_RX_BANK, ENABLE_5|ENABLE_33, ENABLE_5|ENABLE_33 ); */ + /* above isn't needed, since we don't have any GPIO from the FPGA */ + + /* setup the clock scheme to accept the USRP2's 100 MHz ref clk */ + set_clock_scheme(0,100000000); + + /* initial setting of gain */ + dbb->set_gain(dbb,U2_DOUBLE_TO_FXPT_GAIN(20.0)); + + /* Set the freq now to get the one time 10ms delay out of the way. */ + u2_fxpt_freq_t dc; + dbb->set_freq(dbb, dbb->freq_min, &dc); + + /* set up the RF bandwidth of the signal of interest...Note: there + doesn't appear to be a standard way of setting this bandwidth + in USRP2-land (compared to USRP1-land, where we have the + straight-forward set_bw() method). Not sure why this is, but + for now, simply set the bandwidth once for the intended + application. */ + db->extra.set_bw(dbb, 25000); /* 25 MHz channel bw */ + + return true; +} + +bool +bitshark_rx_set_freq(struct db_base *dbb, u2_fxpt_freq_t freq, u2_fxpt_freq_t *dc) +{ + struct db_bitshark_rx_dummy *db = (struct db_bitshark_rx_dummy *) dbb; + unsigned char args[NUM_BYTES_IN_I2C_CMD]; + unsigned char val[4]; + uint32_t freq_in_khz = (uint32_t)(u2_fxpt_freq_to_double(freq)/1000.0); + + if(!(freq>=db->base.freq_min && freq<=db->base.freq_max)) + { + return false; + } + + memset(args,0x00,NUM_BYTES_IN_I2C_CMD); + memcpy(val,&freq_in_khz,4); + args[0] = RF_CENTER_FREQ_REG; + args[5] = val[3]; + args[6] = val[2]; + args[7] = val[1]; + args[8] = val[0]; + + i2c_write(I2C_ADDR, args, NUM_BYTES_IN_I2C_CMD); + *dc = freq; + return true; +} + +bool +bitshark_rx_set_gain(struct db_base *dbb, u2_fxpt_gain_t gain) +{ + struct db_bitshark_rx_dummy *db = (struct db_bitshark_rx_dummy *) dbb; + + unsigned char args[NUM_BYTES_IN_I2C_CMD]; + uint8_t final_gain = (uint8_t)(u2_fxpt_gain_round_to_int(gain)); + + if(!(gain >= db->base.gain_min && gain <= db->base.gain_max)) + { + return false; + } + + memset(args,0x00,NUM_BYTES_IN_I2C_CMD); + args[0] = RF_GAIN_REG; + args[5] = final_gain; + + i2c_write(I2C_ADDR, args, NUM_BYTES_IN_I2C_CMD); + + return true; +} + +bool +bitshark_rx_set_bw(struct db_base *dbb, uint16_t bw_in_khz) +{ + struct db_bitshark_rx_dummy *db = (struct db_bitshark_rx_dummy *) dbb; + unsigned char val[4]; + unsigned char args[NUM_BYTES_IN_I2C_CMD]; + + if(!(bw_in_khz >= db->extra.bw_min && bw_in_khz <= db->extra.bw_max)) + { + return false; + } + + memset(args,0x00,NUM_BYTES_IN_I2C_CMD); + memcpy(val,&bw_in_khz,4); + args[0] = RF_CENTER_FREQ_REG; + args[5] = val[3]; + args[6] = val[2]; + args[7] = val[1]; + args[8] = val[0]; + + i2c_write(I2C_ADDR, args, NUM_BYTES_IN_I2C_CMD); + + return true; +} + +static bool +set_clock_scheme(uint8_t clock_scheme, uint32_t ref_clk_freq) +{ + /* Set the clock scheme for determining how the BURX + dboard receives its clock. For the USRP2, there is really only + one way of doing this, which is to use the 100 MHz ref clk + on the USRP2 as its reference. However, it is possible to + use the BURX's 26 MHz TCXO as the external reference input to + the USRP, which would provide phase lock between our oscillator + and the USRP's 100 MHz oscillator. And since the BURX board + provides the ability to warp the oscillator, this may be + useful to some folks. Otherwise, the BURX board will always + just take the 100 MHz reference from the USRP2 as its reference. + */ + + unsigned char args[NUM_BYTES_IN_I2C_CMD]; + char val[4]; + + if (clock_scheme > 1) + { + return false; + } + + memcpy(val,&ref_clk_freq,4); + args[0] = CLOCK_SCHEME_REG; + args[4] = clock_scheme; + args[5] = val[3]; + args[6] = val[2]; + args[7] = val[1]; + args[8] = val[0]; + + i2c_write(I2C_ADDR, args, NUM_BYTES_IN_I2C_CMD); + + return true; +} + diff --git a/usrp2/firmware/lib/db_bitshark_rx.h b/usrp2/firmware/lib/db_bitshark_rx.h new file mode 100644 index 000000000..3651f27b8 --- /dev/null +++ b/usrp2/firmware/lib/db_bitshark_rx.h @@ -0,0 +1,46 @@ +/* + * Copyright 2010 Free Software Foundation, Inc. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + * + */ + +#ifndef DB_BITSHARK_RX_H +#define DB_BITSHARK_RX_H + +#include <db_base.h> + +struct db_bitshark_rx_extra +{ + uint16_t bw_min; + uint16_t bw_max; + bool (*set_bw)(struct db_base *, uint16_t bw); + +}; + +struct db_bitshark_rx_dummy +{ + struct db_base base; + struct db_bitshark_rx_extra extra; +}; + + +struct db_bitshark_rx +{ + struct db_base base; + struct db_bitshark_rx_extra extra; +}; + + +#endif /* DB_BITSHARK_RX_H */ diff --git a/usrp2/firmware/lib/db_init_bitshark_rx.c b/usrp2/firmware/lib/db_init_bitshark_rx.c new file mode 100644 index 000000000..5729e3724 --- /dev/null +++ b/usrp2/firmware/lib/db_init_bitshark_rx.c @@ -0,0 +1,401 @@ +/* -*- c++ -*- */ +/* + * Copyright 2008,2009 Free Software Foundation, Inc. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + +#include <memory_map.h> +#include <i2c.h> +#include <usrp2_i2c_addr.h> +#include <string.h> +#include <stdio.h> +#include <db.h> +#include <db_base.h> +#include <hal_io.h> +#include <nonstdio.h> + +struct db_base *rx_dboard; // the rx daughterboard that's installed +struct db_base *tx_dboard; // the tx daughterboard that's installed + +extern struct db_base db_basic_tx; +extern struct db_base db_basic_rx; +extern struct db_base db_lf_tx; +extern struct db_base db_lf_rx; +extern struct db_base db_bitshark_rx; + +struct db_base *all_dboards[] = { + &db_basic_tx, + &db_basic_rx, + &db_lf_tx, + &db_lf_rx, + &db_bitshark_rx, + 0 +}; + + +typedef enum { UDBE_OK, UDBE_NO_EEPROM, UDBE_INVALID_EEPROM } usrp_dbeeprom_status_t; + +static usrp_dbeeprom_status_t +read_raw_dboard_eeprom (unsigned char *buf, int i2c_addr) +{ + if (!eeprom_read (i2c_addr, 0, buf, DB_EEPROM_CLEN)) + return UDBE_NO_EEPROM; + + if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE) + return UDBE_INVALID_EEPROM; + + int sum = 0; + unsigned int i; + for (i = 0; i < DB_EEPROM_CLEN; i++) + sum += buf[i]; + + if ((sum & 0xff) != 0) + return UDBE_INVALID_EEPROM; + + return UDBE_OK; +} + + +/* + * Return DBID, -1 <none> or -2 <invalid eeprom contents> + */ +int +read_dboard_eeprom(int i2c_addr) +{ + unsigned char buf[DB_EEPROM_CLEN]; + + usrp_dbeeprom_status_t s = read_raw_dboard_eeprom (buf, i2c_addr); + + //printf("\nread_raw_dboard_eeprom: %d\n", s); + + switch (s){ + case UDBE_OK: + return (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB]; + + case UDBE_NO_EEPROM: + default: + return -1; + + case UDBE_INVALID_EEPROM: + return -2; + } +} + + +static struct db_base * +lookup_dbid(int dbid) +{ + if (dbid < 0) + return 0; + + int i; + for (i = 0; all_dboards[i]; i++) + if (all_dboards[i]->dbid == dbid) + return all_dboards[i]; + + return 0; +} + +static struct db_base * +lookup_dboard(int i2c_addr, struct db_base *default_db, char *msg) +{ + struct db_base *db; + int dbid = read_dboard_eeprom(i2c_addr); + + // FIXME removing this printf has the system hang if there are two d'boards + // installed. (I think the problem is in i2c_read/write or the way + // I kludge the zero-byte write to set the read address in eeprom_read.) + printf("%s dbid: 0x%x\n", msg, dbid); + + if (dbid < 0){ // there was some kind of problem. Treat as Basic Tx + return default_db; + } + else if ((db = lookup_dbid(dbid)) == 0){ + printf("No daugherboard code for dbid = 0x%x\n", dbid); + return default_db; + } + return db; +} + +void +set_atr_regs(int bank, struct db_base *db) +{ + uint32_t val[4]; + int shift; + int mask; + int i; + + val[ATR_IDLE] = db->atr_rxval; + val[ATR_RX] = db->atr_rxval; + val[ATR_TX] = db->atr_txval; + val[ATR_FULL] = db->atr_txval; + + if (bank == GPIO_TX_BANK){ + mask = 0xffff0000; + shift = 16; + } + else { + mask = 0x0000ffff; + shift = 0; + } + + for (i = 0; i < 4; i++){ + int t = (atr_regs->v[i] & ~mask) | ((val[i] << shift) & mask); + //printf("atr_regs[%d] = 0x%x\n", i, t); + atr_regs->v[i] = t; + } +} + +static void +set_gpio_mode(int bank, struct db_base *db) +{ + int i; + + hal_gpio_set_ddr(bank, db->output_enables, 0xffff); + set_atr_regs(bank, db); + + for (i = 0; i < 16; i++){ + if (db->used_pins & (1 << i)){ + // set to either GPIO_SEL_SW or GPIO_SEL_ATR + hal_gpio_set_sel(bank, i, (db->atr_mask & (1 << i)) ? 'a' : 's'); + } + } +} + +static int __attribute__((unused)) +determine_tx_mux_value(struct db_base *db) +{ + if (db->i_and_q_swapped) + return 0x01; + else + return 0x10; +} + +static int +determine_rx_mux_value(struct db_base *db) +{ +#define ADC0 0x0 +#define ADC1 0x1 +#define ZERO 0x2 + + static int truth_table[8] = { + /* swap_iq, uses */ + /* 0, 0x0 */ (ZERO << 2) | ZERO, // N/A + /* 0, 0x1 */ (ZERO << 2) | ADC0, + /* 0, 0x2 */ (ZERO << 2) | ADC1, + /* 0, 0x3 */ (ADC1 << 2) | ADC0, + /* 1, 0x0 */ (ZERO << 2) | ZERO, // N/A + /* 1, 0x1 */ (ZERO << 2) | ADC0, + /* 1, 0x2 */ (ZERO << 2) | ADC1, + /* 1, 0x3 */ (ADC0 << 2) | ADC1, + }; + + int subdev0_uses; + int subdev1_uses; + int uses; + + if (db->is_quadrature) + subdev0_uses = 0x3; // uses A/D 0 and 1 + else + subdev0_uses = 0x1; // uses A/D 0 only + + // FIXME second subdev on Basic Rx, LF RX + // if subdev2 exists + // subdev1_uses = 0x2; + subdev1_uses = 0; + + uses = subdev0_uses; + + int swap_iq = db->i_and_q_swapped & 0x1; + int index = (swap_iq << 2) | uses; + + return truth_table[index]; +} + + +void +db_init(void) +{ + int m; + + tx_dboard = lookup_dboard(I2C_ADDR_TX_A, &db_basic_tx, "Tx"); + //printf("db_init: tx dbid = 0x%x\n", tx_dboard->dbid); + set_gpio_mode(GPIO_TX_BANK, tx_dboard); + tx_dboard->init(tx_dboard); + m = determine_tx_mux_value(tx_dboard); + dsp_tx_regs->tx_mux = m; + //printf("tx_mux = 0x%x\n", m); + tx_dboard->current_lo_offset = tx_dboard->default_lo_offset; + + rx_dboard = lookup_dboard(I2C_ADDR_RX_A, &db_basic_rx, "Rx"); + //printf("db_init: rx dbid = 0x%x\n", rx_dboard->dbid); + set_gpio_mode(GPIO_RX_BANK, rx_dboard); + rx_dboard->init(rx_dboard); + m = determine_rx_mux_value(rx_dboard); + dsp_rx_regs->rx_mux = m; + //printf("rx_mux = 0x%x\n", m); + rx_dboard->current_lo_offset = rx_dboard->default_lo_offset; +} + +/*! + * Calculate the frequency to use for setting the digital down converter. + * + * \param[in] target_freq desired RF frequency (Hz) + * \param[in] baseband_freq the RF frequency that corresponds to DC in the IF. + * + * \param[out] dxc_freq is the value for the ddc + * \param[out] inverted is true if we're operating in an inverted Nyquist zone. +*/ +void +calc_dxc_freq(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t baseband_freq, + u2_fxpt_freq_t *dxc_freq, bool *inverted) +{ + u2_fxpt_freq_t fs = U2_DOUBLE_TO_FXPT_FREQ(100e6); // converter sample rate + u2_fxpt_freq_t delta = target_freq - baseband_freq; + +#if 0 + printf("calc_dxc_freq\n"); + printf(" fs = "); print_fxpt_freq(fs); newline(); + printf(" target = "); print_fxpt_freq(target_freq); newline(); + printf(" baseband = "); print_fxpt_freq(baseband_freq); newline(); + printf(" delta = "); print_fxpt_freq(delta); newline(); +#endif + + if (delta >= 0){ + while (delta > fs) + delta -= fs; + if (delta <= fs/2){ // non-inverted region + *dxc_freq = -delta; + *inverted = false; + } + else { // inverted region + *dxc_freq = delta - fs; + *inverted = true; + } + } + else { + while (delta < -fs) + delta += fs; + if (delta >= -fs/2){ // non-inverted region + *dxc_freq = -delta; + *inverted = false; + } + else { // inverted region + *dxc_freq = delta + fs; + *inverted = true; + } + } +} + +bool +db_set_lo_offset(struct db_base *db, u2_fxpt_freq_t offset) +{ + db->current_lo_offset = offset; + return true; +} + +bool +db_tune(struct db_base *db, u2_fxpt_freq_t target_freq, struct tune_result *result) +{ + memset(result, 0, sizeof(*result)); + bool inverted = false; + u2_fxpt_freq_t dxc_freq; + u2_fxpt_freq_t actual_dxc_freq; + + // Ask the d'board to tune as closely as it can to target_freq+lo_offset + bool ok = db->set_freq(db, target_freq+db->current_lo_offset, &result->baseband_freq); + + // Calculate the DDC setting that will downconvert the baseband from the + // daughterboard to our target frequency. + calc_dxc_freq(target_freq, result->baseband_freq, &dxc_freq, &inverted); + + // If the spectrum is inverted, and the daughterboard doesn't do + // quadrature downconversion, we can fix the inversion by flipping the + // sign of the dxc_freq... (This only happens using the basic_rx board) + + if (db->spectrum_inverted) + inverted = !inverted; + + if (inverted && !db->is_quadrature){ + dxc_freq = -dxc_freq; + inverted = !inverted; + } + + if (db->is_tx){ + dxc_freq = -dxc_freq; // down conversion versus up conversion + ok &= db_set_duc_freq(dxc_freq, &actual_dxc_freq); + } + else { + ok &= db_set_ddc_freq(dxc_freq, &actual_dxc_freq); + } + + result->dxc_freq = dxc_freq; + result->residual_freq = dxc_freq - actual_dxc_freq; + result->inverted = inverted; + return ok; +} + +static int32_t +compute_freq_control_word(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t *actual_freq) +{ + // If we were using floating point, we'd calculate + // master = 100e6; + // v = (int) rint(target_freq / master_freq) * pow(2.0, 32.0); + + //printf("compute_freq_control_word\n"); + //printf(" target_freq = "); print_fxpt_freq(target_freq); newline(); + + int32_t master_freq = 100000000; // 100M + + int32_t v = ((target_freq << 12)) / master_freq; + //printf(" fcw = %d\n", v); + + *actual_freq = (v * (int64_t) master_freq) >> 12; + + //printf(" actual = "); print_fxpt_freq(*actual_freq); newline(); + + return v; +} + + +bool +db_set_ddc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) +{ + int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); + dsp_rx_regs->freq = v; + return true; +} + +bool +db_set_duc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) +{ + int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); + dsp_tx_regs->freq = v; + return true; +} + +bool +db_set_gain(struct db_base *db, u2_fxpt_gain_t gain) +{ + return db->set_gain(db, gain); +} + +bool +db_set_antenna(struct db_base *db, int ant) +{ + if (db->set_antenna == 0) return false; + return db->set_antenna(db, ant); +} |