diff options
Diffstat (limited to 'gr-vocoder/lib/codec2/lsp.c')
-rw-r--r-- | gr-vocoder/lib/codec2/lsp.c | 325 |
1 files changed, 325 insertions, 0 deletions
diff --git a/gr-vocoder/lib/codec2/lsp.c b/gr-vocoder/lib/codec2/lsp.c new file mode 100644 index 000000000..47001c1ef --- /dev/null +++ b/gr-vocoder/lib/codec2/lsp.c @@ -0,0 +1,325 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: lsp.c + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + + + This file contains functions for LPC to LSP conversion and LSP to + LPC conversion. Note that the LSP coefficients are not in radians + format but in the x domain of the unit circle. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2009 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +#include "defines.h" +#include "lsp.h" +#include <math.h> +#include <stdio.h> +#include <stdlib.h> + +/* Only 10 gets used, so far. */ +#define LSP_MAX_ORDER 20 + +/*---------------------------------------------------------------------------*\ + + Introduction to Line Spectrum Pairs (LSPs) + ------------------------------------------ + + LSPs are used to encode the LPC filter coefficients {ak} for + transmission over the channel. LSPs have several properties (like + less sensitivity to quantisation noise) that make them superior to + direct quantisation of {ak}. + + A(z) is a polynomial of order lpcrdr with {ak} as the coefficients. + + A(z) is transformed to P(z) and Q(z) (using a substitution and some + algebra), to obtain something like: + + A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)] (1) + + As you can imagine A(z) has complex zeros all over the z-plane. P(z) + and Q(z) have the very neat property of only having zeros _on_ the + unit circle. So to find them we take a test point z=exp(jw) and + evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0 + and pi. + + The zeros (roots) of P(z) also happen to alternate, which is why we + swap coefficients as we find roots. So the process of finding the + LSP frequencies is basically finding the roots of 5th order + polynomials. + + The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence + the name Line Spectrum Pairs (LSPs). + + To convert back to ak we just evaluate (1), "clocking" an impulse + thru it lpcrdr times gives us the impulse response of A(z) which is + {ak}. + +\*---------------------------------------------------------------------------*/ + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cheb_poly_eva() + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + + This function evalutes a series of chebyshev polynomials + + FIXME: performing memory allocation at run time is very inefficient, + replace with stack variables of MAX_P size. + +\*---------------------------------------------------------------------------*/ + + +static float +cheb_poly_eva(float *coef,float x,int m) +/* float coef[] coefficients of the polynomial to be evaluated */ +/* float x the point where polynomial is to be evaluated */ +/* int m order of the polynomial */ +{ + int i; + float *t,*u,*v,sum; + float T[(LSP_MAX_ORDER / 2) + 1]; + + /* Initialise pointers */ + + t = T; /* T[i-2] */ + *t++ = 1.0; + u = t--; /* T[i-1] */ + *u++ = x; + v = u--; /* T[i] */ + + /* Evaluate chebyshev series formulation using iterative approach */ + + for(i=2;i<=m/2;i++) + *v++ = (2*x)*(*u++) - *t++; /* T[i] = 2*x*T[i-1] - T[i-2] */ + + sum=0.0; /* initialise sum to zero */ + t = T; /* reset pointer */ + + /* Evaluate polynomial and return value also free memory space */ + + for(i=0;i<=m/2;i++) + sum+=coef[(m/2)-i]**t++; + + return sum; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: lpc_to_lsp() + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + + This function converts LPC coefficients to LSP coefficients. + +\*---------------------------------------------------------------------------*/ + +int lpc_to_lsp (float *a, int lpcrdr, float *freq, int nb, float delta) +/* float *a lpc coefficients */ +/* int lpcrdr order of LPC coefficients (10) */ +/* float *freq LSP frequencies in radians */ +/* int nb number of sub-intervals (4) */ +/* float delta grid spacing interval (0.02) */ +{ + float psuml,psumr,psumm,temp_xr,xl,xr,xm = 0; + float temp_psumr; + int i,j,m,flag,k; + float *px; /* ptrs of respective P'(z) & Q'(z) */ + float *qx; + float *p; + float *q; + float *pt; /* ptr used for cheb_poly_eval() + whether P' or Q' */ + int roots=0; /* number of roots found */ + float Q[LSP_MAX_ORDER + 1]; + float P[LSP_MAX_ORDER + 1]; + + flag = 1; + m = lpcrdr/2; /* order of P'(z) & Q'(z) polynimials */ + + /* Allocate memory space for polynomials */ + + /* determine P'(z)'s and Q'(z)'s coefficients where + P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */ + + px = P; /* initilaise ptrs */ + qx = Q; + p = px; + q = qx; + *px++ = 1.0; + *qx++ = 1.0; + for(i=1;i<=m;i++){ + *px++ = a[i]+a[lpcrdr+1-i]-*p++; + *qx++ = a[i]-a[lpcrdr+1-i]+*q++; + } + px = P; + qx = Q; + for(i=0;i<m;i++){ + *px = 2**px; + *qx = 2**qx; + px++; + qx++; + } + px = P; /* re-initialise ptrs */ + qx = Q; + + /* Search for a zero in P'(z) polynomial first and then alternate to Q'(z). + Keep alternating between the two polynomials as each zero is found */ + + xr = 0; /* initialise xr to zero */ + xl = 1.0; /* start at point xl = 1 */ + + + for(j=0;j<lpcrdr;j++){ + if(j%2) /* determines whether P' or Q' is eval. */ + pt = qx; + else + pt = px; + + psuml = cheb_poly_eva(pt,xl,lpcrdr); /* evals poly. at xl */ + flag = 1; + while(flag && (xr >= -1.0)){ + xr = xl - delta ; /* interval spacing */ + psumr = cheb_poly_eva(pt,xr,lpcrdr);/* poly(xl-delta_x) */ + temp_psumr = psumr; + temp_xr = xr; + + /* if no sign change increment xr and re-evaluate + poly(xr). Repeat til sign change. if a sign change has + occurred the interval is bisected and then checked again + for a sign change which determines in which interval the + zero lies in. If there is no sign change between poly(xm) + and poly(xl) set interval between xm and xr else set + interval between xl and xr and repeat till root is located + within the specified limits */ + + if((psumr*psuml)<0.0){ + roots++; + + psumm=psuml; + for(k=0;k<=nb;k++){ + xm = (xl+xr)/2; /* bisect the interval */ + psumm=cheb_poly_eva(pt,xm,lpcrdr); + if(psumm*psuml>0.){ + psuml=psumm; + xl=xm; + } + else{ + psumr=psumm; + xr=xm; + } + } + + /* once zero is found, reset initial interval to xr */ + freq[j] = (xm); + xl = xm; + flag = 0; /* reset flag for next search */ + } + else{ + psuml=temp_psumr; + xl=temp_xr; + } + } + } + + /* convert from x domain to radians */ + + for(i=0; i<lpcrdr; i++) { + freq[i] = acos(freq[i]); + } + + return(roots); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: lsp_to_lpc() + AUTHOR......: David Rowe + DATE CREATED: 24/2/93 + + This function converts LSP coefficients to LPC coefficients. In the + Speex code we worked out a way to simplify this significantly. + +\*---------------------------------------------------------------------------*/ + +void lsp_to_lpc(float *lsp, float *ak, int lpcrdr) +/* float *freq array of LSP frequencies in radians */ +/* float *ak array of LPC coefficients */ +/* int lpcrdr order of LPC coefficients */ + + +{ + int i,j; + float xout1,xout2,xin1,xin2; + float *pw,*n1,*n2,*n3,*n4 = 0; + int m = lpcrdr/2; + float freq[LSP_MAX_ORDER]; + float Wp[(LSP_MAX_ORDER * 4) + 2]; + + /* convert from radians to the x=cos(w) domain */ + + for(i=0; i<lpcrdr; i++) + freq[i] = cos(lsp[i]); + + pw = Wp; + + /* initialise contents of array */ + + for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */ + *pw++ = 0.0; + } + + /* Set pointers up */ + + pw = Wp; + xin1 = 1.0; + xin2 = 1.0; + + /* reconstruct P(z) and Q(z) by cascading second order polynomials + in form 1 - 2xz(-1) +z(-2), where x is the LSP coefficient */ + + for(j=0;j<=lpcrdr;j++){ + for(i=0;i<m;i++){ + n1 = pw+(i*4); + n2 = n1 + 1; + n3 = n2 + 1; + n4 = n3 + 1; + xout1 = xin1 - 2*(freq[2*i]) * *n1 + *n2; + xout2 = xin2 - 2*(freq[2*i+1]) * *n3 + *n4; + *n2 = *n1; + *n4 = *n3; + *n1 = xin1; + *n3 = xin2; + xin1 = xout1; + xin2 = xout2; + } + xout1 = xin1 + *(n4+1); + xout2 = xin2 - *(n4+2); + ak[j] = (xout1 + xout2)*0.5; + *(n4+1) = xin1; + *(n4+2) = xin2; + + xin1 = 0.0; + xin2 = 0.0; + } +} + |