diff options
Diffstat (limited to 'gr-trellis/src/examples/python/fsm_utils.py')
-rwxr-xr-x | gr-trellis/src/examples/python/fsm_utils.py | 239 |
1 files changed, 0 insertions, 239 deletions
diff --git a/gr-trellis/src/examples/python/fsm_utils.py b/gr-trellis/src/examples/python/fsm_utils.py deleted file mode 100755 index 06855ea77..000000000 --- a/gr-trellis/src/examples/python/fsm_utils.py +++ /dev/null @@ -1,239 +0,0 @@ -#!/usr/bin/env python -# -# Copyright 2004 Free Software Foundation, Inc. -# -# This file is part of GNU Radio -# -# GNU Radio is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 3, or (at your option) -# any later version. -# -# GNU Radio is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with GNU Radio; see the file COPYING. If not, write to -# the Free Software Foundation, Inc., 51 Franklin Street, -# Boston, MA 02110-1301, USA. -# - - -import re -import math -import sys -import operator -import numpy - -from gnuradio import trellis - -try: - import scipy.linalg -except ImportError: - print "Error: Program requires scipy (see: www.scipy.org)." - sys.exit(1) - - - -###################################################################### -# Decimal to any base conversion. -# Convert 'num' to a list of 'l' numbers representing 'num' -# to base 'base' (most significant symbol first). -###################################################################### -def dec2base(num,base,l): - s=range(l) - n=num - for i in range(l): - s[l-i-1]=n%base - n=int(n/base) - if n!=0: - print 'Number ', num, ' requires more than ', l, 'digits.' - return s - - -###################################################################### -# Conversion from any base to decimal. -# Convert a list 's' of symbols to a decimal number -# (most significant symbol first) -###################################################################### -def base2dec(s,base): - num=0 - for i in range(len(s)): - num=num*base+s[i] - return num - - - - -###################################################################### -# Automatically generate the lookup table that maps the FSM outputs -# to channel inputs corresponding to a channel 'channel' and a modulation -# 'mod'. Optional normalization of channel to unit energy. -# This table is used by the 'metrics' block to translate -# channel outputs to metrics for use with the Viterbi algorithm. -# Limitations: currently supports only one-dimensional modulations. -###################################################################### -def make_isi_lookup(mod,channel,normalize): - dim=mod[0] - constellation = mod[1] - - if normalize: - p = 0 - for i in range(len(channel)): - p = p + channel[i]**2 - for i in range(len(channel)): - channel[i] = channel[i]/math.sqrt(p) - - lookup=range(len(constellation)**len(channel)) - for o in range(len(constellation)**len(channel)): - ss=dec2base(o,len(constellation),len(channel)) - ll=0 - for i in range(len(channel)): - ll=ll+constellation[ss[i]]*channel[i] - lookup[o]=ll - return (1,lookup) - - - - - - -###################################################################### -# Automatically generate the signals appropriate for CPM -# decomposition. -# This decomposition is based on the paper by B. Rimoldi -# "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988 -# See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf -###################################################################### -def make_cpm_signals(K,P,M,L,q,frac): - - Q=numpy.size(q)/L - h=(1.0*K)/P - f0=-h*(M-1)/2 - dt=0.0; # maybe start at t=0.5 - t=(dt+numpy.arange(0,Q))/Q - qq=numpy.zeros(Q) - for m in range(L): - qq=qq + q[m*Q:m*Q+Q] - w=math.pi*h*(M-1)*t-2*math.pi*h*(M-1)*qq+math.pi*h*(L-1)*(M-1) - - X=(M**L)*P - PSI=numpy.empty((X,Q)) - for x in range(X): - xv=dec2base(x/P,M,L) - xv=numpy.append(xv, x%P) - qq1=numpy.zeros(Q) - for m in range(L): - qq1=qq1+xv[m]*q[m*Q:m*Q+Q] - psi=2*math.pi*h*xv[-1]+4*math.pi*h*qq1+w - #print psi - PSI[x]=psi - PSI = numpy.transpose(PSI) - SS=numpy.exp(1j*PSI) # contains all signals as columns - #print SS - - - # Now we need to orthogonalize the signals - F = scipy.linalg.orth(SS) # find an orthonormal basis for SS - #print numpy.dot(numpy.transpose(F.conjugate()),F) # check for orthonormality - S = numpy.dot(numpy.transpose(F.conjugate()),SS) - #print F - #print S - - # We only want to keep those dimensions that contain most - # of the energy of the overall constellation (eg, frac=0.9 ==> 90%) - # evaluate mean energy in each dimension - E=numpy.sum(numpy.absolute(S)**2,axis=1)/Q - E=E/numpy.sum(E) - #print E - Es = -numpy.sort(-E) - Esi = numpy.argsort(-E) - #print Es - #print Esi - Ecum=numpy.cumsum(Es) - #print Ecum - v0=numpy.searchsorted(Ecum,frac) - N = v0+1 - #print v0 - #print Esi[0:v0+1] - Ff=numpy.transpose(numpy.transpose(F)[Esi[0:v0+1]]) - #print Ff - Sf = S[Esi[0:v0+1]] - #print Sf - - - return (f0,SS,S,F,Sf,Ff,N) - #return f0 - - - - -###################################################################### -# A list of common modulations. -# Format: (dimensionality,constellation) -###################################################################### -pam2 = (1,[-1, 1]) -pam4 = (1,[-3, -1, 3, 1]) # includes Gray mapping -pam8 = (1,[-7, -5, -3, -1, 1, 3, 5, 7]) - -psk4=(2,[1, 0, \ - 0, 1, \ - 0, -1,\ - -1, 0]) # includes Gray mapping -psk8=(2,[math.cos(2*math.pi*0/8), math.sin(2*math.pi*0/8), \ - math.cos(2*math.pi*1/8), math.sin(2*math.pi*1/8), \ - math.cos(2*math.pi*2/8), math.sin(2*math.pi*2/8), \ - math.cos(2*math.pi*3/8), math.sin(2*math.pi*3/8), \ - math.cos(2*math.pi*4/8), math.sin(2*math.pi*4/8), \ - math.cos(2*math.pi*5/8), math.sin(2*math.pi*5/8), \ - math.cos(2*math.pi*6/8), math.sin(2*math.pi*6/8), \ - math.cos(2*math.pi*7/8), math.sin(2*math.pi*7/8)]) - -orth2 = (2,[1, 0, \ - 0, 1]) -orth4=(4,[1, 0, 0, 0, \ - 0, 1, 0, 0, \ - 0, 0, 1, 0, \ - 0, 0, 0, 1]) - -###################################################################### -# A list of channels to be tested -###################################################################### - -# C test channel (J. Proakis, Digital Communications, McGraw-Hill Inc., 2001) -c_channel = [0.227, 0.460, 0.688, 0.460, 0.227] - - - - - - - - - - -if __name__ == '__main__': - f1=trellis.fsm('fsm_files/awgn1o2_4.fsm') - #f2=trellis.fsm('fsm_files/awgn2o3_4.fsm') - #print f1.I(), f1.S(), f1.O() - #print f1.NS() - #print f1.OS() - #print f2.I(), f2.S(), f2.O() - #print f2.NS() - #print f2.OS() - ##f1.write_trellis_svg('f1.svg',4) - #f2.write_trellis_svg('f2.svg',4) - #f=fsm_concatenate(f1,f2) - #f=fsm_radix(f1,2) - - #print "----------\n" - #print f.I(), f.S(), f.O() - #print f.NS() - #print f.OS() - #f.write_trellis_svg('f.svg',4) - - q=numpy.arange(0,8)/(2.0*8) - (f0,SS,S,F,Sf,Ff,N) = make_cpm_signals(1,2,2,1,q,0.99) - |