diff options
Diffstat (limited to 'gr-radio-astronomy/src/python/usrp_ra_receiver.py')
-rwxr-xr-x | gr-radio-astronomy/src/python/usrp_ra_receiver.py | 1384 |
1 files changed, 0 insertions, 1384 deletions
diff --git a/gr-radio-astronomy/src/python/usrp_ra_receiver.py b/gr-radio-astronomy/src/python/usrp_ra_receiver.py deleted file mode 100755 index c37355d28..000000000 --- a/gr-radio-astronomy/src/python/usrp_ra_receiver.py +++ /dev/null @@ -1,1384 +0,0 @@ -#!/usr/bin/env python -# -# Copyright 2004,2005,2007 Free Software Foundation, Inc. -# -# This file is part of GNU Radio -# -# GNU Radio is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 3, or (at your option) -# any later version. -# -# GNU Radio is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with GNU Radio; see the file COPYING. If not, write to -# the Free Software Foundation, Inc., 51 Franklin Street, -# Boston, MA 02110-1301, USA. -# - -from gnuradio import gr, gru -from gnuradio import usrp -from usrpm import usrp_dbid -from gnuradio import eng_notation -from gnuradio.eng_option import eng_option -from gnuradio.wxgui import stdgui2, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider -from optparse import OptionParser -import wx -import sys -import Numeric -import time -import numpy.fft -import ephem - -class app_flow_graph(stdgui2.std_top_block): - def __init__(self, frame, panel, vbox, argv): - stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) - - self.frame = frame - self.panel = panel - - parser = OptionParser(option_class=eng_option) - parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0), - help="select USRP Rx side A or B (default=A)") - parser.add_option("-d", "--decim", type="int", default=16, - help="set fgpa decimation rate to DECIM [default=%default]") - parser.add_option("-f", "--freq", type="eng_float", default=None, - help="set frequency to FREQ", metavar="FREQ") - parser.add_option("-a", "--avg", type="eng_float", default=1.0, - help="set spectral averaging alpha") - parser.add_option("-i", "--integ", type="eng_float", default=1.0, - help="set integration time") - parser.add_option("-g", "--gain", type="eng_float", default=None, - help="set gain in dB (default is midpoint)") - parser.add_option("-l", "--reflevel", type="eng_float", default=30.0, - help="Set Total power reference level") - parser.add_option("-y", "--division", type="eng_float", default=0.5, - help="Set Total power Y division size") - parser.add_option("-e", "--longitude", type="eng_float", default=-76.02,help="Set Observer Longitude") - parser.add_option("-c", "--latitude", type="eng_float", default=44.85,help="Set Observer Latitude") - parser.add_option("-o", "--observing", type="eng_float", default=0.0, - help="Set observing frequency") - parser.add_option("-x", "--ylabel", default="dB", help="Y axis label") - parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base") - parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples") - parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT") - parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination") - parser.add_option("-X", "--prefix", default="./") - parser.add_option("-M", "--fft_rate", type="eng_float", default=8.0, help="FFT Rate") - parser.add_option("-A", "--calib_coeff", type="eng_float", default=1.0, help="Calibration coefficient") - parser.add_option("-B", "--calib_offset", type="eng_float", default=0.0, help="Calibration coefficient") - parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Use Waterfall FFT display") - parser.add_option("-S", "--setimode", action="store_true", default=False, help="Enable SETI processing of spectral data") - parser.add_option("-K", "--setik", type="eng_float", default=1.5, help="K value for SETI analysis") - parser.add_option("-T", "--setibandwidth", type="eng_float", default=12500, help="Instantaneous SETI observing bandwidth--must be divisor of 250Khz") - parser.add_option("-Q", "--seti_range", type="eng_float", default=1.0e6, help="Total scan width, in Hz for SETI scans") - parser.add_option("-Z", "--dual_mode", action="store_true", - default=False, help="Dual-polarization mode") - parser.add_option("-I", "--interferometer", action="store_true", default=False, help="Interferometer mode") - parser.add_option("-D", "--switch_mode", action="store_true", default=False, help="Dicke Switching mode") - parser.add_option("-P", "--reference_divisor", type="eng_float", default=1.0, help="Reference Divisor") - parser.add_option("-U", "--ref_fifo", default=None) - parser.add_option("-k", "--notch_taps", type="int", default=64, help="Number of notch taps") - parser.add_option("-n", "--notches", action="store_true", - default=False, help="Notch frequencies after all other args") - parser.add_option("-Y", "--interface", default=None) - parser.add_option("-H", "--mac_addr", default=None) - - # Added this documentation - - (options, args) = parser.parse_args() - - self.setimode = options.setimode - self.dual_mode = options.dual_mode - self.interferometer = options.interferometer - self.normal_mode = False - self.switch_mode = options.switch_mode - self.switch_state = 0 - self.reference_divisor = options.reference_divisor - self.ref_fifo = options.ref_fifo - self.usrp2 = False - self.decim = options.decim - self.rx_subdev_spec = options.rx_subdev_spec - - if (options.interface != None and options.mac_addr != None): - self.mac_addr = options.mac_addr - self.interface = options.interface - self.usrp2 = True - - self.NOTCH_TAPS = options.notch_taps - self.notches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64) - # Get notch locations - j = 0 - for i in args: - self.notches[j] = float(i) - j = j + 1 - - self.use_notches = options.notches - - if (self.ref_fifo != None): - self.ref_fifo_file = open (self.ref_fifo, "r") - - modecount = 0 - for modes in (self.dual_mode, self.interferometer): - if (modes == True): - modecount = modecount + 1 - - if (modecount > 1): - print "must select only 1 of --dual_mode, or --interferometer" - sys.exit(1) - - self.chartneeded = True - - if (self.setimode == True): - self.chartneeded = False - - if (self.setimode == True and self.interferometer == True): - print "can't pick both --setimode and --interferometer" - sys.exit(1) - - if (self.setimode == True and self.switch_mode == True): - print "can't pick both --setimode and --switch_mode" - sys.exit(1) - - if (self.interferometer == True and self.switch_mode == True): - print "can't pick both --interferometer and --switch_mode" - sys.exit(1) - - if (modecount == 0): - self.normal_mode = True - - self.show_debug_info = True - - # Pick up waterfall option - self.waterfall = options.waterfall - - # SETI mode stuff - self.setimode = options.setimode - self.seticounter = 0 - self.setik = options.setik - self.seti_fft_bandwidth = int(options.setibandwidth) - - # Calculate binwidth - binwidth = self.seti_fft_bandwidth / options.fft_size - - # Use binwidth, and knowledge of likely chirp rates to set reasonable - # values for SETI analysis code. We assume that SETI signals will - # chirp at somewhere between 0.10Hz/sec and 0.25Hz/sec. - # - # upper_limit is the "worst case"--that is, the case for which we have - # to wait the longest to actually see any drift, due to the quantizing - # on FFT bins. - upper_limit = binwidth / 0.10 - self.setitimer = int(upper_limit * 2.00) - self.scanning = True - - # Calculate the CHIRP values based on Hz/sec - self.CHIRP_LOWER = 0.10 * self.setitimer - self.CHIRP_UPPER = 0.25 * self.setitimer - - # Reset hit counters to 0 - self.hitcounter = 0 - self.s1hitcounter = 0 - self.s2hitcounter = 0 - self.avgdelta = 0 - # We scan through 2Mhz of bandwidth around the chosen center freq - self.seti_freq_range = options.seti_range - # Calculate lower edge - self.setifreq_lower = options.freq - (self.seti_freq_range/2) - self.setifreq_current = options.freq - # Calculate upper edge - self.setifreq_upper = options.freq + (self.seti_freq_range/2) - - # Maximum "hits" in a line - self.nhits = 20 - - # Number of lines for analysis - self.nhitlines = 4 - - # We change center frequencies based on nhitlines and setitimer - self.setifreq_timer = self.setitimer * (self.nhitlines * 5) - - # Create actual timer - self.seti_then = time.time() - - # The hits recording array - self.hits_array = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64) - self.hit_intensities = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64) - # Calibration coefficient and offset - self.calib_coeff = options.calib_coeff - self.calib_offset = options.calib_offset - if self.calib_offset < -750: - self.calib_offset = -750 - if self.calib_offset > 750: - self.calib_offset = 750 - - if self.calib_coeff < 1: - self.calib_coeff = 1 - if self.calib_coeff > 100: - self.calib_coeff = 100 - - self.integ = options.integ - self.avg_alpha = options.avg - self.gain = options.gain - self.decln = options.decln - - # Set initial values for datalogging timed-output - self.continuum_then = time.time() - self.spectral_then = time.time() - - - # build the graph - - self.subdev = [(0, 0), (0,0)] - - # - # If SETI mode, we always run at maximum USRP decimation - # - if (self.setimode): - options.decim = 256 - - if (self.dual_mode == True and self.decim <= 4): - print "Cannot use decim <= 4 with dual_mode" - sys.exit(1) - - self.setup_usrp() - - # Set initial declination - self.decln = options.decln - - input_rate = self.u.adc_freq() / self.u.decim_rate() - self.bw = input_rate - # - # Set prefix for data files - # - self.prefix = options.prefix - - # - # The lower this number, the fewer sample frames are dropped - # in computing the FFT. A sampled approach is taken to - # computing the FFT of the incoming data, which reduces - # sensitivity. Increasing sensitivity inreases CPU loading. - # - self.fft_rate = options.fft_rate - - self.fft_size = int(options.fft_size) - - # This buffer is used to remember the most-recent FFT display - # values. Used later by self.write_spectral_data() to write - # spectral data to datalogging files, and by the SETI analysis - # function. - # - self.fft_outbuf = Numeric.zeros(self.fft_size, Numeric.Float64) - - # - # If SETI mode, only look at seti_fft_bandwidth - # at a time. - # - if (self.setimode): - self.fft_input_rate = self.seti_fft_bandwidth - - # - # Build a decimating bandpass filter - # - self.fft_input_taps = gr.firdes.complex_band_pass (1.0, - input_rate, - -(int(self.fft_input_rate/2)), int(self.fft_input_rate/2), 200, - gr.firdes.WIN_HAMMING, 0) - - # - # Compute required decimation factor - # - decimation = int(input_rate/self.fft_input_rate) - self.fft_bandpass = gr.fir_filter_ccc (decimation, - self.fft_input_taps) - else: - self.fft_input_rate = input_rate - - # Set up FFT display - if self.waterfall == False: - self.scope = ra_fftsink.ra_fft_sink_c (panel, - fft_size=int(self.fft_size), sample_rate=self.fft_input_rate, - fft_rate=int(self.fft_rate), title="Spectral", - ofunc=self.fft_outfunc, xydfunc=self.xydfunc) - else: - self.scope = ra_waterfallsink.waterfall_sink_c (panel, - fft_size=int(self.fft_size), sample_rate=self.fft_input_rate, - fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, size=(1100, 600), xydfunc=self.xydfunc, ref_level=0, span=10) - - # Set up ephemeris data - self.locality = ephem.Observer() - self.locality.long = str(options.longitude) - self.locality.lat = str(options.latitude) - - # We make notes about Sunset/Sunrise in Continuum log files - self.sun = ephem.Sun() - self.sunstate = "??" - - # Set up stripchart display - tit = "Continuum" - if (self.dual_mode != False): - tit = "H+V Continuum" - if (self.interferometer != False): - tit = "East x West Correlation" - self.stripsize = int(options.stripsize) - if self.chartneeded == True: - self.chart = ra_stripchartsink.stripchart_sink_f (panel, - stripsize=self.stripsize, - title=tit, - xlabel="LMST Offset (Seconds)", - scaling=1.0, ylabel=options.ylabel, - divbase=options.divbase) - - # Set center frequency - self.centerfreq = options.freq - - # Set observing frequency (might be different from actual programmed - # RF frequency) - if options.observing == 0.0: - self.observing = options.freq - else: - self.observing = options.observing - - # Remember our input bandwidth - self.bw = input_rate - - # - # - # The strip chart is fed at a constant 1Hz rate - # - - # - # Call constructors for receive chains - # - - if (self.dual_mode == True): - self.setup_dual (self.setimode) - - if (self.interferometer == True): - self.setup_interferometer(self.setimode) - - if (self.normal_mode == True): - self.setup_normal(self.setimode) - - if (self.setimode == True): - self.setup_seti() - - self._build_gui(vbox) - - # Make GUI agree with command-line - self.integ = options.integ - if self.setimode == False: - self.myform['integration'].set_value(int(options.integ)) - self.myform['offset'].set_value(self.calib_offset) - self.myform['dcgain'].set_value(self.calib_coeff) - self.myform['average'].set_value(int(options.avg)) - - - if self.setimode == False: - # Make integrator agree with command line - self.set_integration(int(options.integ)) - - self.avg_alpha = options.avg - - # Make spectral averager agree with command line - if options.avg != 1.0: - self.scope.set_avg_alpha(float(1.0/options.avg)) - self.scope.set_average(True) - - if self.setimode == False: - # Set division size - self.chart.set_y_per_div(options.division) - # Set reference(MAX) level - self.chart.set_ref_level(options.reflevel) - - # set initial values - - if options.gain is None: - # if no gain was specified, use the mid-point in dB - g = self.subdev[0].gain_range() - options.gain = float(g[0]+g[1])/2 - - if options.freq is None: - # if no freq was specified, use the mid-point - r = self.subdev[0].freq_range() - options.freq = float(r[0]+r[1])/2 - - # Set the initial gain control - self.set_gain(options.gain) - - if not(self.set_freq(options.freq)): - self._set_status_msg("Failed to set initial frequency") - - # Set declination - self.set_decln (self.decln) - - - # RF hardware information - self.myform['decim'].set_value(self.u.decim_rate()) - self.myform['USB BW'].set_value(self.u.adc_freq() / self.u.decim_rate()) - if (self.dual_mode == True): - self.myform['dbname'].set_value(self.subdev[0].name()+'/'+self.subdev[1].name()) - else: - self.myform['dbname'].set_value(self.subdev[0].name()) - - # Set analog baseband filtering, if DBS_RX - if self.cardtype == usrp_dbid.DBS_RX: - lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2 - if lbw < 1.0e6: - lbw = 1.0e6 - self.subdev[0].set_bw(lbw) - self.subdev[1].set_bw(lbw) - - # Start the timer for the LMST display and datalogging - self.lmst_timer.Start(1000) - if (self.switch_mode == True): - self.other_timer.Start(330) - - - def _set_status_msg(self, msg): - self.frame.GetStatusBar().SetStatusText(msg, 0) - - def _build_gui(self, vbox): - - def _form_set_freq(kv): - # Adjust current SETI frequency, and limits - self.setifreq_lower = kv['freq'] - (self.seti_freq_range/2) - self.setifreq_current = kv['freq'] - self.setifreq_upper = kv['freq'] + (self.seti_freq_range/2) - - # Reset SETI analysis timer - self.seti_then = time.time() - # Zero-out hits array when changing frequency - self.hits_array[:,:] = 0.0 - self.hit_intensities[:,:] = -60.0 - - return self.set_freq(kv['freq']) - - def _form_set_decln(kv): - return self.set_decln(kv['decln']) - - # Position the FFT display - vbox.Add(self.scope.win, 15, wx.EXPAND) - - if self.setimode == False: - # Position the Total-power stripchart - vbox.Add(self.chart.win, 15, wx.EXPAND) - - # add control area at the bottom - self.myform = myform = form.form() - hbox = wx.BoxSizer(wx.HORIZONTAL) - hbox.Add((7,0), 0, wx.EXPAND) - vbox1 = wx.BoxSizer(wx.VERTICAL) - myform['freq'] = form.float_field( - parent=self.panel, sizer=vbox1, label="Center freq", weight=1, - callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg)) - - vbox1.Add((4,0), 0, 0) - - myform['lmst_high'] = form.static_text_field( - parent=self.panel, sizer=vbox1, label="Current LMST", weight=1) - vbox1.Add((4,0), 0, 0) - - if self.setimode == False: - myform['spec_data'] = form.static_text_field( - parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1) - vbox1.Add((4,0), 0, 0) - - vbox2 = wx.BoxSizer(wx.VERTICAL) - if self.setimode == False: - vbox3 = wx.BoxSizer(wx.VERTICAL) - g = self.subdev[0].gain_range() - myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain", - weight=1, - min=int(g[0]), max=int(g[1]), - callback=self.set_gain) - - vbox2.Add((4,0), 0, 0) - if self.setimode == True: - max_savg = 100 - else: - max_savg = 3000 - myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, - label="Spectral Averaging (FFT frames)", weight=1, min=1, max=max_savg, callback=self.set_averaging) - - # Set up scan control button when in SETI mode - if (self.setimode == True): - # SETI scanning control - buttonbox = wx.BoxSizer(wx.HORIZONTAL) - self.scan_control = form.button_with_callback(self.panel, - label="Scan: On ", - callback=self.toggle_scanning) - - buttonbox.Add(self.scan_control, 0, wx.CENTER) - vbox2.Add(buttonbox, 0, wx.CENTER) - - vbox2.Add((4,0), 0, 0) - - if self.setimode == False: - myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2, - label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration) - - vbox2.Add((4,0), 0, 0) - - myform['decln'] = form.float_field( - parent=self.panel, sizer=vbox2, label="Current Declination", weight=1, - callback=myform.check_input_and_call(_form_set_decln)) - vbox2.Add((4,0), 0, 0) - - if self.setimode == False: - myform['offset'] = form.slider_field(parent=self.panel, sizer=vbox3, - label="Post-Detector Offset", weight=1, min=-750, max=750, - callback=self.set_pd_offset) - vbox3.Add((2,0), 0, 0) - myform['dcgain'] = form.slider_field(parent=self.panel, sizer=vbox3, - label="Post-Detector Gain", weight=1, min=1, max=100, - callback=self.set_pd_gain) - vbox3.Add((2,0), 0, 0) - hbox.Add(vbox1, 0, 0) - hbox.Add(vbox2, wx.ALIGN_RIGHT, 0) - - if self.setimode == False: - hbox.Add(vbox3, wx.ALIGN_RIGHT, 0) - - vbox.Add(hbox, 0, wx.EXPAND) - - self._build_subpanel(vbox) - - self.lmst_timer = wx.PyTimer(self.lmst_timeout) - self.other_timer = wx.PyTimer(self.other_timeout) - - - def _build_subpanel(self, vbox_arg): - # build a secondary information panel (sometimes hidden) - - # FIXME figure out how to have this be a subpanel that is always - # created, but has its visibility controlled by foo.Show(True/False) - - if not(self.show_debug_info): - return - - panel = self.panel - vbox = vbox_arg - myform = self.myform - - #panel = wx.Panel(self.panel, -1) - #vbox = wx.BoxSizer(wx.VERTICAL) - - hbox = wx.BoxSizer(wx.HORIZONTAL) - hbox.Add((5,0), 0) - myform['decim'] = form.static_float_field( - parent=panel, sizer=hbox, label="Decim") - - hbox.Add((5,0), 1) - myform['USB BW'] = form.static_float_field( - parent=panel, sizer=hbox, label="USB BW") - - hbox.Add((5,0), 1) - myform['dbname'] = form.static_text_field( - parent=panel, sizer=hbox) - - hbox.Add((5,0), 1) - myform['baseband'] = form.static_float_field( - parent=panel, sizer=hbox, label="Analog BB") - - hbox.Add((5,0), 1) - myform['ddc'] = form.static_float_field( - parent=panel, sizer=hbox, label="DDC") - - hbox.Add((5,0), 0) - vbox.Add(hbox, 0, wx.EXPAND) - - - - def set_freq(self, target_freq): - """ - Set the center frequency we're interested in. - - @param target_freq: frequency in Hz - - """ - # - # - r = usrp.tune(self.u, self.subdev[0].which(), self.subdev[0], target_freq) - r = usrp.tune(self.u, self.subdev[1].which(), self.subdev[1], target_freq) - if r: - self.myform['freq'].set_value(target_freq) # update displayed value - # - # Make sure calibrator knows our target freq - # - - # Remember centerfreq---used for doppler calcs - delta = self.centerfreq - target_freq - self.centerfreq = target_freq - self.observing -= delta - self.scope.set_baseband_freq (self.observing) - self.myform['baseband'].set_value(r.baseband_freq) - self.myform['ddc'].set_value(r.dxc_freq) - - if (self.use_notches): - self.compute_notch_taps(self.notches) - if self.dual_mode == False and self.interferometer == False: - self.notch_filt.set_taps(self.notch_taps) - else: - self.notch_filt1.set_taps(self.notch_taps) - self.notch_filt2.set_taps(self.notch_taps) - - return True - - return False - - def set_decln(self, dec): - self.decln = dec - self.myform['decln'].set_value(dec) # update displayed value - - def set_gain(self, gain): - self.myform['gain'].set_value(gain) # update displayed value - self.subdev[0].set_gain(gain) - self.subdev[1].set_gain(gain) - self.gain = gain - - def set_averaging(self, avval): - self.myform['average'].set_value(avval) - self.scope.set_avg_alpha(1.0/(avval)) - self.scope.set_average(True) - self.avg_alpha = avval - - def set_integration(self, integval): - if self.setimode == False: - self.integrator.set_taps(1.0/((integval)*(self.bw/2))) - self.myform['integration'].set_value(integval) - self.integ = integval - - # - # Timeout function - # Used to update LMST display, as well as current - # continuum value - # - # We also write external data-logging files here - # - def lmst_timeout(self): - self.locality.date = ephem.now() - if self.setimode == False: - x = self.probe.level() - sidtime = self.locality.sidereal_time() - # LMST - s = str(ephem.hours(sidtime)) + " " + self.sunstate - # Continuum detector value - if self.setimode == False: - sx = "%7.4f" % x - s = s + "\nDet: " + str(sx) - else: - sx = "%2d" % self.hitcounter - s1 = "%2d" % self.s1hitcounter - s2 = "%2d" % self.s2hitcounter - sa = "%4.2f" % self.avgdelta - sy = "%3.1f-%3.1f" % (self.CHIRP_LOWER, self.CHIRP_UPPER) - s = s + "\nHits: " + str(sx) + "\nS1:" + str(s1) + " S2:" + str(s2) - s = s + "\nAv D: " + str(sa) + "\nCh lim: " + str(sy) - - self.myform['lmst_high'].set_value(s) - - # - # Write data out to recording files - # - if self.setimode == False: - self.write_continuum_data(x,sidtime) - self.write_spectral_data(self.fft_outbuf,sidtime) - - else: - self.seti_analysis(self.fft_outbuf,sidtime) - now = time.time() - if ((self.scanning == True) and ((now - self.seti_then) > self.setifreq_timer)): - self.seti_then = now - self.setifreq_current = self.setifreq_current + self.fft_input_rate - if (self.setifreq_current > self.setifreq_upper): - self.setifreq_current = self.setifreq_lower - self.set_freq(self.setifreq_current) - # Make sure we zero-out the hits array when changing - # frequency. - self.hits_array[:,:] = 0.0 - self.hit_intensities[:,:] = 0.0 - - def other_timeout(self): - if (self.switch_state == 0): - self.switch_state = 1 - - elif (self.switch_state == 1): - self.switch_state = 0 - - if (self.switch_state == 0): - self.mute.set_n(1) - self.cmute.set_n(int(1.0e9)) - - elif (self.switch_state == 1): - self.mute.set_n(int(1.0e9)) - self.cmute.set_n(1) - - if (self.ref_fifo != "@@@@"): - self.ref_fifo_file.write(str(self.switch_state)+"\n") - self.ref_fifo_file.flush() - - self.avg_reference_value = self.cprobe.level() - - # - # Set reference value - # - self.reference_level.set_k(-1.0 * (self.avg_reference_value/self.reference_divisor)) - - def fft_outfunc(self,data,l): - self.fft_outbuf=data - - def write_continuum_data(self,data,sidtime): - - # Create localtime structure for producing filename - foo = time.localtime() - pfx = self.prefix - filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, - foo.tm_mon, foo.tm_mday, foo.tm_hour) - - # Open the data file, appending - continuum_file = open (filenamestr+".tpdat","a") - - flt = "%6.3f" % data - inter = self.decln - integ = self.integ - fc = self.observing - fc = fc / 1000000 - bw = self.bw - bw = bw / 1000000 - ga = self.gain - - now = time.time() - - # - # If time to write full header info (saves storage this way) - # - if (now - self.continuum_then > 20): - self.sun.compute(self.locality) - enow = ephem.now() - sunset = self.locality.next_setting(self.sun) - sunrise = self.locality.next_rising(self.sun) - sun_insky = "Down" - self.sunstate = "Dn" - if ((sunrise < enow) and (enow < sunset)): - sun_insky = "Up" - self.sunstate = "Up" - self.continuum_then = now - - continuum_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",") - continuum_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw)) - continuum_file.write(",Ga="+str(ga)+",Sun="+str(sun_insky)+"\n") - else: - continuum_file.write(str(ephem.hours(sidtime))+" "+flt+"\n") - - continuum_file.close() - return(data) - - def write_spectral_data(self,data,sidtime): - - now = time.time() - delta = 10 - - # If time to write out spectral data - # We don't write this out every time, in order to - # save disk space. Since the spectral data are - # typically heavily averaged, writing this data - # "once in a while" is OK. - # - if (now - self.spectral_then >= delta): - self.spectral_then = now - - # Get localtime structure to make filename from - foo = time.localtime() - - pfx = self.prefix - filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, - foo.tm_mon, foo.tm_mday, foo.tm_hour) - - # Open the file - spectral_file = open (filenamestr+".sdat","a") - - # Setup data fields to be written - r = data - inter = self.decln - fc = self.observing - fc = fc / 1000000 - bw = self.bw - bw = bw / 1000000 - av = self.avg_alpha - - # Write those fields - spectral_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av)) - spectral_file.write (" [ ") - for r in data: - spectral_file.write(" "+str(r)) - - spectral_file.write(" ]\n") - spectral_file.close() - return(data) - - return(data) - - def seti_analysis(self,fftbuf,sidtime): - l = len(fftbuf) - x = 0 - hits = [] - hit_intensities = [] - if self.seticounter < self.setitimer: - self.seticounter = self.seticounter + 1 - return - else: - self.seticounter = 0 - - # Run through FFT output buffer, computing standard deviation (Sigma) - avg = 0 - # First compute average - for i in range(0,l): - avg = avg + fftbuf[i] - avg = avg / l - - sigma = 0.0 - # Then compute standard deviation (Sigma) - for i in range(0,l): - d = fftbuf[i] - avg - sigma = sigma + (d*d) - - sigma = Numeric.sqrt(sigma/l) - - # - # Snarfle through the FFT output buffer again, looking for - # outlying data points - - start_f = self.observing - (self.fft_input_rate/2) - current_f = start_f - l = len(fftbuf) - f_incr = self.fft_input_rate / l - hit = -1 - - # -nyquist to DC - for i in range(l/2,l): - # - # If current FFT buffer has an item that exceeds the specified - # sigma - # - if ((fftbuf[i] - avg) > (self.setik * sigma)): - hits.append(current_f) - hit_intensities.append(fftbuf[i]) - current_f = current_f + f_incr - - # DC to nyquist - for i in range(0,l/2): - # - # If current FFT buffer has an item that exceeds the specified - # sigma - # - if ((fftbuf[i] - avg) > (self.setik * sigma)): - hits.append(current_f) - hit_intensities.append(fftbuf[i]) - current_f = current_f + f_incr - - # No hits - if (len(hits) <= 0): - return - - - # - # OK, so we have some hits in the FFT buffer - # They'll have a rather substantial gauntlet to run before - # being declared a real "hit" - # - - # Update stats - self.s1hitcounter = self.s1hitcounter + len(hits) - - # Weed out buffers with an excessive number of - # signals above Sigma - if (len(hits) > self.nhits): - return - - - # Weed out FFT buffers with apparent multiple narrowband signals - # separated significantly in frequency. This means that a - # single signal spanning multiple bins is OK, but a buffer that - # has multiple, apparently-separate, signals isn't OK. - # - last = hits[0] - ns2 = 1 - for i in range(1,len(hits)): - if ((hits[i] - last) > (f_incr*3.0)): - return - last = hits[i] - ns2 = ns2 + 1 - - self.s2hitcounter = self.s2hitcounter + ns2 - - # - # Run through all available hit buffers, computing difference between - # frequencies found there, if they're all within the chirp limits - # declare a good hit - # - good_hit = False - f_ds = Numeric.zeros(self.nhitlines, Numeric.Float64) - avg_delta = 0 - k = 0 - for i in range(0,min(len(hits),len(self.hits_array[:,0]))): - f_ds[0] = abs(self.hits_array[i,0] - hits[i]) - for j in range(1,len(f_ds)): - f_ds[j] = abs(self.hits_array[i,j] - self.hits_array[i,0]) - avg_delta = avg_delta + f_ds[j] - k = k + 1 - - if (self.seti_isahit (f_ds)): - good_hit = True - self.hitcounter = self.hitcounter + 1 - break - - if (avg_delta/k < (self.seti_fft_bandwidth/2)): - self.avgdelta = avg_delta / k - - # Save 'n shuffle hits - # Old hit buffers percolate through the hit buffers - # (there are self.nhitlines of these buffers) - # and then drop off the end - # A consequence is that while the nhitlines buffers are filling, - # you can get some absurd values for self.avgdelta, because some - # of the buffers are full of zeros - for i in range(self.nhitlines,1): - self.hits_array[:,i] = self.hits_array[:,i-1] - self.hit_intensities[:,i] = self.hit_intensities[:,i-1] - - for i in range(0,len(hits)): - self.hits_array[i,0] = hits[i] - self.hit_intensities[i,0] = hit_intensities[i] - - # Finally, write the hits/intensities buffer - if (good_hit): - self.write_hits(sidtime) - - return - - def seti_isahit(self,fdiffs): - truecount = 0 - - for i in range(0,len(fdiffs)): - if (fdiffs[i] >= self.CHIRP_LOWER and fdiffs[i] <= self.CHIRP_UPPER): - truecount = truecount + 1 - - if truecount == len(fdiffs): - return (True) - else: - return (False) - - def write_hits(self,sidtime): - # Create localtime structure for producing filename - foo = time.localtime() - pfx = self.prefix - filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, - foo.tm_mon, foo.tm_mday, foo.tm_hour) - - # Open the data file, appending - hits_file = open (filenamestr+".seti","a") - - # Write sidtime first - hits_file.write(str(ephem.hours(sidtime))+" "+str(self.decln)+" ") - - # - # Then write the hits/hit intensities buffers with enough - # "syntax" to allow parsing by external (not yet written!) - # "stuff". - # - for i in range(0,self.nhitlines): - hits_file.write(" ") - for j in range(0,self.nhits): - hits_file.write(str(self.hits_array[j,i])+":") - hits_file.write(str(self.hit_intensities[j,i])+",") - hits_file.write("\n") - hits_file.close() - return - - def xydfunc(self,func,xyv): - if self.setimode == True: - return - magn = int(Numeric.log10(self.observing)) - if (magn == 6 or magn == 7 or magn == 8): - magn = 6 - dfreq = xyv[0] * pow(10.0,magn) - if func == 0: - ratio = self.observing / dfreq - vs = 1.0 - ratio - vs *= 299792.0 - if magn >= 9: - xhz = "Ghz" - elif magn >= 6: - xhz = "Mhz" - elif magn <= 5: - xhz = "Khz" - s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1]) - s2 = "\n%.3fkm/s" % vs - self.myform['spec_data'].set_value(s+s2) - else: - tmpnotches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64) - delfreq = -1 - if self.use_notches == True: - for i in range(0,len(self.notches)): - if self.notches[i] != 0 and abs(self.notches[i] - dfreq) < ((self.bw/self.NOTCH_TAPS)/2.0): - delfreq = i - break - j = 0 - for i in range(0,len(self.notches)): - if (i != delfreq): - tmpnotches[j] = self.notches[i] - j = j + 1 - if (delfreq == -1): - for i in range(0,len(tmpnotches)): - if (int(tmpnotches[i]) == 0): - tmpnotches[i] = dfreq - break - self.notches = tmpnotches - self.compute_notch_taps(self.notches) - if self.dual_mode == False and self.interferometer == False: - self.notch_filt.set_taps(self.notch_taps) - else: - self.notch_filt1.set_taps(self.notch_taps) - self.notch_filt2.set_taps(self.notch_taps) - - def xydfunc_waterfall(self,pos): - lower = self.observing - (self.seti_fft_bandwidth / 2) - upper = self.observing + (self.seti_fft_bandwidth / 2) - binwidth = self.seti_fft_bandwidth / 1024 - s = "%.6fMHz" % ((lower + (pos.x*binwidth)) / 1.0e6) - self.myform['spec_data'].set_value(s) - - def toggle_cal(self): - if (self.calstate == True): - self.calstate = False - self.u.write_io(0,0,(1<<15)) - self.calibrator.SetLabel("Calibration Source: Off") - else: - self.calstate = True - self.u.write_io(0,(1<<15),(1<<15)) - self.calibrator.SetLabel("Calibration Source: On") - - def toggle_annotation(self): - if (self.annotate_state == True): - self.annotate_state = False - self.annotation.SetLabel("Annotation: Off") - else: - self.annotate_state = True - self.annotation.SetLabel("Annotation: On") - # - # Turn scanning on/off - # Called-back by "Recording" button - # - def toggle_scanning(self): - # Current scanning? Flip state - if (self.scanning == True): - self.scanning = False - self.scan_control.SetLabel("Scan: Off") - # Not scanning - else: - self.scanning = True - self.scan_control.SetLabel("Scan: On ") - - def set_pd_offset(self,offs): - self.myform['offset'].set_value(offs) - self.calib_offset=offs - x = self.calib_coeff / 100.0 - self.cal_offs.set_k(offs*(x*8000)) - - def set_pd_gain(self,gain): - self.myform['dcgain'].set_value(gain) - self.cal_mult.set_k(gain*0.01) - self.calib_coeff = gain - x = gain/100.0 - self.cal_offs.set_k(self.calib_offset*(x*8000)) - - def compute_notch_taps(self,notchlist): - tmptaps = Numeric.zeros(self.NOTCH_TAPS,Numeric.Complex64) - binwidth = self.bw / self.NOTCH_TAPS - - for i in range(0,self.NOTCH_TAPS): - tmptaps[i] = complex(1.0,0.0) - - for i in notchlist: - diff = i - self.observing - if int(i) == 0: - break - if ((i < (self.observing - self.bw/2)) or (i > (self.observing + self.bw/2))): - continue - if (diff > 0): - idx = diff / binwidth - idx = round(idx) - idx = int(idx) - if (idx < 0 or idx > (self.NOTCH_TAPS/2)): - break - tmptaps[idx] = complex(0.0, 0.0) - - if (diff < 0): - idx = -diff / binwidth - idx = round(idx) - idx = (self.NOTCH_TAPS/2) - idx - idx = int(idx+(self.NOTCH_TAPS/2)) - if (idx < 0 or idx >= (self.NOTCH_TAPS)): - break - tmptaps[idx] = complex(0.0, 0.0) - - self.notch_taps = numpy.fft.ifft(tmptaps) - - # - # Setup common pieces of radiometer mode - # - def setup_radiometer_common(self,n): - # The IIR integration filter for post-detection - self.integrator = gr.single_pole_iir_filter_ff(1.0) - self.integrator.set_taps (1.0/self.bw) - - if (self.use_notches == True): - self.compute_notch_taps(self.notches) - if (n == 2): - self.notch_filt1 = gr.fft_filter_ccc(1, self.notch_taps) - self.notch_filt2 = gr.fft_filter_ccc(1, self.notch_taps) - else: - self.notch_filt = gr.fft_filter_ccc(1, self.notch_taps) - - - # Signal probe - self.probe = gr.probe_signal_f() - - # - # Continuum calibration stuff - # - x = self.calib_coeff/100.0 - self.cal_mult = gr.multiply_const_ff(self.calib_coeff/100.0) - self.cal_offs = gr.add_const_ff(self.calib_offset*(x*8000)) - - # - # Mega decimator after IIR filter - # - if (self.switch_mode == False): - self.keepn = gr.keep_one_in_n(gr.sizeof_float, self.bw) - else: - self.keepn = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/2)) - - # - # For the Dicke-switching scheme - # - #self.switch = gr.multiply_const_ff(1.0) - - # - if (self.switch_mode == True): - self.vector = gr.vector_sink_f() - self.swkeep = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/3)) - self.mute = gr.keep_one_in_n(gr.sizeof_float, 1) - self.cmute = gr.keep_one_in_n(gr.sizeof_float, int(1.0e9)) - self.cintegrator = gr.single_pole_iir_filter_ff(1.0/(self.bw/2)) - self.cprobe = gr.probe_signal_f() - else: - self.mute = gr.multiply_const_ff(1.0) - - - self.avg_reference_value = 0.0 - self.reference_level = gr.add_const_ff(0.0) - - # - # Setup ordinary single-channel radiometer mode - # - def setup_normal(self, setimode): - - self.setup_radiometer_common(1) - - self.head = self.u - if (self.use_notches == True): - self.shead = self.notch_filt - else: - self.shead = self.u - - if setimode == False: - - self.detector = gr.complex_to_mag_squared() - self.connect(self.shead, self.scope) - - if (self.use_notches == False): - self.connect(self.head, self.detector, self.mute, self.reference_level, - self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) - else: - self.connect(self.head, self.notch_filt, self.detector, self.mute, self.reference_level, - self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) - - self.connect(self.cal_offs, self.probe) - - # - # Add a side-chain detector chain, with a different integrator, for sampling - # The reference channel data - # This is used to derive the offset value for self.reference_level, used above - # - if (self.switch_mode == True): - self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe) - - return - - # - # Setup dual-channel (two antenna, usual orthogonal polarity probes in the same waveguide) - # - def setup_dual(self, setimode): - - self.setup_radiometer_common(2) - - self.di = gr.deinterleave(gr.sizeof_gr_complex) - self.addchans = gr.add_cc () - self.detector = gr.add_ff () - self.h_power = gr.complex_to_mag_squared() - self.v_power = gr.complex_to_mag_squared() - self.connect (self.u, self.di) - - if (self.use_notches == True): - self.connect((self.di, 0), self.notch_filt1, (self.addchans, 0)) - self.connect((self.di, 1), self.notch_filt2, (self.addchans, 1)) - else: - # - # For spectral, adding the two channels works, assuming no gross - # phase or amplitude error - self.connect ((self.di, 0), (self.addchans, 0)) - self.connect ((self.di, 1), (self.addchans, 1)) - - # - # Connect heads of spectral and total-power chains - # - if (self.use_notches == False): - self.head = self.di - else: - self.head = (self.notch_filt1, self.notch_filt2) - - self.shead = self.addchans - - if (setimode == False): - # - # For dual-polarization mode, we compute the sum of the - # powers on each channel, after they've been detected - # - self.detector = gr.add_ff() - - # - # In dual-polarization mode, we compute things a little differently - # In effect, we have two radiometer chains, terminating in an adder - # - if self.use_notches == True: - self.connect(self.notch_filt1, self.h_power) - self.connect(self.notch_filt2, self.v_power) - else: - self.connect((self.head, 0), self.h_power) - self.connect((self.head, 1), self.v_power) - self.connect(self.h_power, (self.detector, 0)) - self.connect(self.v_power, (self.detector, 1)) - self.connect(self.detector, self.mute, self.reference_level, - self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) - self.connect(self.cal_offs, self.probe) - self.connect(self.shead, self.scope) - - # - # Add a side-chain detector chain, with a different integrator, for sampling - # The reference channel data - # This is used to derive the offset value for self.reference_level, used above - # - if (self.switch_mode == True): - self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe) - return - - # - # Setup correlating interferometer mode - # - def setup_interferometer(self, setimode): - self.setup_radiometer_common(2) - - self.di = gr.deinterleave(gr.sizeof_gr_complex) - self.connect (self.u, self.di) - self.corr = gr.multiply_cc() - self.c2f = gr.complex_to_float() - - self.shead = (self.di, 0) - - # Channel 0 to multiply port 0 - # Channel 1 to multiply port 1 - if (self.use_notches == False): - self.connect((self.di, 0), (self.corr, 0)) - self.connect((self.di, 1), (self.corr, 1)) - else: - self.connect((self.di, 0), self.notch_filt1, (self.corr, 0)) - self.connect((self.di, 1), self.notch_filt2, (self.corr, 0)) - - # - # Multiplier (correlator) to complex-to-float, followed by integrator, etc - # - self.connect(self.corr, self.c2f, self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) - - # - # FFT scope gets only 1 channel - # FIX THIS, by cross-correlating the *outputs* of two different FFTs, then display - # Funky! - # - self.connect(self.shead, self.scope) - - # - # Output of correlator/integrator chain to probe - # - self.connect(self.cal_offs, self.probe) - - return - - # - # Setup SETI mode - # - def setup_seti(self): - self.connect (self.shead, self.fft_bandpass, self.scope) - return - - def setup_usrp(self): - - if (self.usrp2 == False): - if (self.dual_mode == False and self.interferometer == False): - if (self.decim > 4): - self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192) - else: - self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192, fpga_filename="std_4rx_0tx.rbf") - self.u.set_mux(usrp.determine_rx_mux_value(self.u, self.rx_subdev_spec)) - # determine the daughterboard subdevice we're using - self.subdev[0] = usrp.selected_subdev(self.u, self.rx_subdev_spec) - self.subdev[1] = self.subdev[0] - self.cardtype = self.subdev[0].dbid() - else: - self.u=usrp.source_c(decim_rate=self.decim, nchan=2,fusb_block_size=8192) - self.subdev[0] = usrp.selected_subdev(self.u, (0, 0)) - self.subdev[1] = usrp.selected_subdev(self.u, (1, 0)) - self.cardtype = self.subdev[0].dbid() - self.u.set_mux(0x32103210) - c1 = self.subdev[0].name() - c2 = self.subdev[1].name() - if (c1 != c2): - print "Must have identical cardtypes for --dual_mode or --interferometer" - sys.exit(1) - # - # Set 8-bit mode - # - - width = 8 - shift = 8 - format = self.u.make_format(width, shift) - r = self.u.set_format(format) - else: - if (self.dual_mode == True or self.interferometer == True): - print "Cannot use dual_mode or interferometer with single USRP2" - sys.exit(1) - self.u = usrp2.source_32fc(self.interface, self.mac_addr) - self.u.set_decim (self.decim) - self.cardtype = self.u.daughterboard_id() - -def main (): - app = stdgui2.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision$", nstatus=1) - app.MainLoop() - -if __name__ == '__main__': - main () |