summaryrefslogtreecommitdiff
path: root/gr-msdd6000/src/python-examples/msdd_spectrum_sense.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-msdd6000/src/python-examples/msdd_spectrum_sense.py')
-rwxr-xr-xgr-msdd6000/src/python-examples/msdd_spectrum_sense.py296
1 files changed, 296 insertions, 0 deletions
diff --git a/gr-msdd6000/src/python-examples/msdd_spectrum_sense.py b/gr-msdd6000/src/python-examples/msdd_spectrum_sense.py
new file mode 100755
index 000000000..e3d182b03
--- /dev/null
+++ b/gr-msdd6000/src/python-examples/msdd_spectrum_sense.py
@@ -0,0 +1,296 @@
+#!/usr/bin/env python
+#
+# Copyright 2008 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, gru, eng_notation, optfir, window
+from gnuradio import msdd
+from gnuradio.eng_option import eng_option
+from optparse import OptionParser
+import sys
+import math
+import struct
+from pylab import *
+from numpy import array
+import time
+
+matplotlib.interactive(True)
+matplotlib.use('TkAgg')
+
+class tune(gr.feval_dd):
+ """
+ This class allows C++ code to callback into python.
+ """
+ def __init__(self, tb):
+ gr.feval_dd.__init__(self)
+ self.tb = tb
+
+ def eval(self, ignore):
+ """
+ This method is called from gr.bin_statistics_f when it wants to change
+ the center frequency. This method tunes the front end to the new center
+ frequency, and returns the new frequency as its result.
+ """
+ try:
+ # We use this try block so that if something goes wrong from here
+ # down, at least we'll have a prayer of knowing what went wrong.
+ # Without this, you get a very mysterious:
+ #
+ # terminate called after throwing an instance of 'Swig::DirectorMethodException'
+ # Aborted
+ #
+ # message on stderr. Not exactly helpful ;)
+
+ new_freq = self.tb.set_next_freq()
+ return new_freq
+
+ except Exception, e:
+ print "tune: Exception: ", e
+
+
+class parse_msg(object):
+ def __init__(self, sample_rate, percent, alpha=0.01):
+ self.axis_font_size = 16
+ self.label_font_size = 18
+ self.title_font_size = 20
+ self.text_size = 22
+
+ self.fig = figure(1, facecolor="w", figsize=(12,9))
+ self.sp = self.fig.add_subplot(1,1,1)
+ self.pl = self.sp.plot(range(100), 100*[1,])
+
+ params = {'backend': 'ps',
+ 'xtick.labelsize': self.axis_font_size,
+ 'ytick.labelsize': self.axis_font_size,
+ 'text.usetex': False}
+ rcParams.update(params)
+
+ self.sp.set_title(("FFT"), fontsize=self.title_font_size, fontweight="bold")
+ self.sp.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold")
+ self.sp.set_ylabel("Magnitude (dB)", fontsize=self.label_font_size, fontweight="bold")
+ self.text_alpha = figtext(0.10, 0.94, ('Moving average alpha: %s' % alpha), weight="heavy", size=self.text_size)
+
+ self.cfreqs = list()
+ self.freqrange = list()
+ self.data = list() #array('f')
+
+ self.alpha = alpha
+
+ self.index = 0
+ self.full = False
+ self.last_cfreq = 0
+
+ self.sample_rate = sample_rate
+ self.percent = (1.0-percent)/2.0
+
+ def parse(self, msg):
+ self.center_freq = msg.arg1()
+ self.vlen = int(msg.arg2())
+ assert(msg.length() == self.vlen * gr.sizeof_float)
+
+
+ if(self.center_freq < self.last_cfreq):
+ print "Plotting spectrum\n"
+ self.full = True
+
+ self.pl[0].set_data([self.freqrange, self.data])
+ self.sp.set_ylim([min(self.data), max(self.data)])
+ self.sp.set_xlim([min(self.freqrange), max(self.freqrange)])
+ draw()
+
+ self.index = 0
+ del self.freqrange
+ self.freqrange = list()
+ #raw_input()
+
+ self.last_cfreq = self.center_freq
+
+ startind = int(self.percent * self.vlen)
+ endind = int((1.0 - self.percent) * self.vlen)
+
+ fstep = self.sample_rate / self.vlen
+ f = [self.center_freq - self.sample_rate/2.0 + i*fstep for i in range(startind, endind)]
+ self.freqrange += f
+
+ t = msg.to_string()
+ d = struct.unpack('%df' % (self.vlen,), t)
+
+ if self.full:
+ for i in range(startind, endind):
+ self.data[self.index] = (1.0-self.alpha)*self.data[self.index] + (self.alpha)*d[i]
+ self.index += 1
+ else:
+ self.data += [di for di in d[startind:endind]]
+
+
+class my_top_block(gr.top_block):
+
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ usage = "usage: %prog [options] host min_freq max_freq"
+ parser = OptionParser(option_class=eng_option, usage=usage)
+ parser.add_option("-g", "--gain", type="eng_float", default=None,
+ help="set gain in dB (default is midpoint)")
+ parser.add_option("", "--tune-delay", type="eng_float", default=5e-5, metavar="SECS",
+ help="time to delay (in seconds) after changing frequency [default=%default]")
+ parser.add_option("", "--dwell-delay", type="eng_float", default=50e-5, metavar="SECS",
+ help="time to dwell (in seconds) at a given frequncy [default=%default]")
+ parser.add_option("-F", "--fft-size", type="int", default=256,
+ help="specify number of FFT bins [default=%default]")
+ parser.add_option("-d", "--decim", type="intx", default=16,
+ help="set decimation to DECIM [default=%default]")
+ parser.add_option("", "--real-time", action="store_true", default=False,
+ help="Attempt to enable real-time scheduling")
+
+ (options, args) = parser.parse_args()
+ if len(args) != 3:
+ parser.print_help()
+ sys.exit(1)
+
+ self.address = args[0]
+ self.min_freq = eng_notation.str_to_num(args[1])
+ self.max_freq = eng_notation.str_to_num(args[2])
+
+ self.decim = options.decim
+ self.gain = options.gain
+
+ if self.min_freq > self.max_freq:
+ self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them
+
+ self.fft_size = options.fft_size
+
+ if not options.real_time:
+ realtime = False
+ else:
+ # Attempt to enable realtime scheduling
+ r = gr.enable_realtime_scheduling()
+ if r == gr.RT_OK:
+ realtime = True
+ else:
+ realtime = False
+ print "Note: failed to enable realtime scheduling"
+
+ adc_rate = 102.4e6
+ self.int_rate = adc_rate / self.decim
+ print "Sampling rate: ", self.int_rate
+
+ # build graph
+ self.port = 10001
+ self.src = msdd.source_simple(self.address, self.port)
+ self.src.set_decim_rate(self.decim)
+
+ self.set_gain(self.gain)
+ self.set_freq(self.min_freq)
+
+ s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
+
+ mywindow = window.blackmanharris(self.fft_size)
+ fft = gr.fft_vcc(self.fft_size, True, mywindow, True)
+ power = 0
+ for tap in mywindow:
+ power += tap*tap
+
+ norm = gr.multiply_const_cc(1.0/self.fft_size)
+ c2mag = gr.complex_to_mag_squared(self.fft_size)
+
+ # FIXME the log10 primitive is dog slow
+ log = gr.nlog10_ff(10, self.fft_size,
+ -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size))
+
+ # Set the freq_step to % of the actual data throughput.
+ # This allows us to discard the bins on both ends of the spectrum.
+ self.percent = 0.4
+
+ self.freq_step = self.percent * self.int_rate
+ self.min_center_freq = self.min_freq + self.freq_step/2
+ nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step)
+ self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step)
+
+ self.next_freq = self.min_center_freq
+
+ tune_delay = max(0, int(round(options.tune_delay * self.int_rate / self.fft_size))) # in fft_frames
+ dwell_delay = max(1, int(round(options.dwell_delay * self.int_rate / self.fft_size))) # in fft_frames
+
+ self.msgq = gr.msg_queue(16)
+ self._tune_callback = tune(self) # hang on to this to keep it from being GC'd
+ stats = gr.bin_statistics_f(self.fft_size, self.msgq,
+ self._tune_callback, tune_delay, dwell_delay)
+
+ # FIXME leave out the log10 until we speed it up
+ self.connect(self.src, s2v, fft, c2mag, log, stats)
+
+
+ def set_next_freq(self):
+ target_freq = self.next_freq
+ self.next_freq = self.next_freq + self.freq_step
+ if self.next_freq >= self.max_center_freq:
+ self.next_freq = self.min_center_freq
+
+ if not self.set_freq(target_freq):
+ print "Failed to set frequency to", target_freq
+
+ return target_freq
+
+
+ def set_freq(self, target_freq):
+ """
+ Set the center frequency we're interested in.
+
+ @param target_freq: frequency in Hz
+ @rypte: bool
+
+ """
+ return self.src.set_rx_freq(0, target_freq)
+
+
+ def set_gain(self, gain):
+ self.src.set_pga(0, gain)
+
+
+def main_loop(tb):
+ msgparser = parse_msg(tb.int_rate, tb.percent)
+
+ while 1:
+
+ # Get the next message sent from the C++ code (blocking call).
+ # It contains the center frequency and the mag squared of the fft
+ msgparser.parse(tb.msgq.delete_head())
+
+ # Print center freq so we know that something is happening...
+ print msgparser.center_freq
+
+ # FIXME do something useful with the data...
+
+ # m.data are the mag_squared of the fft output (they are in the
+ # standard order. I.e., bin 0 == DC.)
+ # You'll probably want to do the equivalent of "fftshift" on them
+ # m.raw_data is a string that contains the binary floats.
+ # You could write this as binary to a file.
+
+
+if __name__ == '__main__':
+ tb = my_top_block()
+ try:
+ tb.start() # start executing flow graph in another thread...
+ main_loop(tb)
+
+ except KeyboardInterrupt:
+ pass