diff options
Diffstat (limited to 'gr-gsm-fr-vocoder/src/lib/gsm/short_term.c')
-rw-r--r-- | gr-gsm-fr-vocoder/src/lib/gsm/short_term.c | 429 |
1 files changed, 0 insertions, 429 deletions
diff --git a/gr-gsm-fr-vocoder/src/lib/gsm/short_term.c b/gr-gsm-fr-vocoder/src/lib/gsm/short_term.c deleted file mode 100644 index 4f5fd7be7..000000000 --- a/gr-gsm-fr-vocoder/src/lib/gsm/short_term.c +++ /dev/null @@ -1,429 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header$ */ - -#include <stdio.h> -#include <assert.h> - -#include "private.h" - -#include "gsm.h" -#include "proto.h" - -/* - * SHORT TERM ANALYSIS FILTERING SECTION - */ - -/* 4.2.8 */ - -static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp), - word * LARc, /* coded log area ratio [0..7] IN */ - word * LARpp) /* out: decoded .. */ -{ - register word temp1 /* , temp2 */; - register long ltmp; /* for GSM_ADD */ - - /* This procedure requires for efficient implementation - * two tables. - * - * INVA[1..8] = integer( (32768 * 8) / real_A[1..8]) - * MIC[1..8] = minimum value of the LARc[1..8] - */ - - /* Compute the LARpp[1..8] - */ - - /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) { - * - * temp1 = GSM_ADD( *LARc, *MIC ) << 10; - * temp2 = *B << 1; - * temp1 = GSM_SUB( temp1, temp2 ); - * - * assert(*INVA != MIN_WORD); - * - * temp1 = GSM_MULT_R( *INVA, temp1 ); - * *LARpp = GSM_ADD( temp1, temp1 ); - * } - */ - -#undef STEP -#define STEP( B, MIC, INVA ) \ - temp1 = GSM_ADD( *LARc++, MIC ) << 10; \ - temp1 = GSM_SUB( temp1, B << 1 ); \ - temp1 = GSM_MULT_R( INVA, temp1 ); \ - *LARpp++ = GSM_ADD( temp1, temp1 ); - - STEP( 0, -32, 13107 ); - STEP( 0, -32, 13107 ); - STEP( 2048, -16, 13107 ); - STEP( -2560, -16, 13107 ); - - STEP( 94, -8, 19223 ); - STEP( -1792, -8, 17476 ); - STEP( -341, -4, 31454 ); - STEP( -1144, -4, 29708 ); - - /* NOTE: the addition of *MIC is used to restore - * the sign of *LARc. - */ -} - -/* 4.2.9 */ -/* Computation of the quantized reflection coefficients - */ - -/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8] - */ - -/* - * Within each frame of 160 analyzed speech samples the short term - * analysis and synthesis filters operate with four different sets of - * coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) - * and the actual set of decoded LARs (LARpp(j)) - * - * (Initial value: LARpp(j-1)[1..8] = 0.) - */ - -static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp), - register word * LARpp_j_1, - register word * LARpp_j, - register word * LARp) -{ - register int i; - register longword ltmp; - - for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) { - *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); - *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1)); - } -} - -static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp), - register word * LARpp_j_1, - register word * LARpp_j, - register word * LARp) -{ - register int i; - register longword ltmp; - for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { - *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 )); - } -} - -static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp), - register word * LARpp_j_1, - register word * LARpp_j, - register word * LARp) -{ - register int i; - register longword ltmp; - - for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { - *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); - *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 )); - } -} - - -static void Coefficients_40_159 P2((LARpp_j, LARp), - register word * LARpp_j, - register word * LARp) -{ - register int i; - - for (i = 1; i <= 8; i++, LARp++, LARpp_j++) - *LARp = *LARpp_j; -} - -/* 4.2.9.2 */ - -static void LARp_to_rp P1((LARp), - register word * LARp) /* [0..7] IN/OUT */ -/* - * The input of this procedure is the interpolated LARp[0..7] array. - * The reflection coefficients, rp[i], are used in the analysis - * filter and in the synthesis filter. - */ -{ - register int i; - register word temp; - register longword ltmp; - - for (i = 1; i <= 8; i++, LARp++) { - - /* temp = GSM_ABS( *LARp ); - * - * if (temp < 11059) temp <<= 1; - * else if (temp < 20070) temp += 11059; - * else temp = GSM_ADD( temp >> 2, 26112 ); - * - * *LARp = *LARp < 0 ? -temp : temp; - */ - - if (*LARp < 0) { - temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp); - *LARp = - ((temp < 11059) ? temp << 1 - : ((temp < 20070) ? temp + 11059 - : GSM_ADD( temp >> 2, 26112 ))); - } else { - temp = *LARp; - *LARp = (temp < 11059) ? temp << 1 - : ((temp < 20070) ? temp + 11059 - : GSM_ADD( temp >> 2, 26112 )); - } - } -} - - -/* 4.2.10 */ -static void Short_term_analysis_filtering P4((S,rp,k_n,s), - struct gsm_state * S, - register word * rp, /* [0..7] IN */ - register int k_n, /* k_end - k_start */ - register word * s /* [0..n-1] IN/OUT */ -) -/* - * This procedure computes the short term residual signal d[..] to be fed - * to the RPE-LTP loop from the s[..] signal and from the local rp[..] - * array (quantized reflection coefficients). As the call of this - * procedure can be done in many ways (see the interpolation of the LAR - * coefficient), it is assumed that the computation begins with index - * k_start (for arrays d[..] and s[..]) and stops with index k_end - * (k_start and k_end are defined in 4.2.9.1). This procedure also - * needs to keep the array u[0..7] in memory for each call. - */ -{ - register word * u = S->u; - register int i; - register word di, zzz, ui, sav, rpi; - register longword ltmp; - - for (; k_n--; s++) { - - di = sav = *s; - - for (i = 0; i < 8; i++) { /* YYY */ - - ui = u[i]; - rpi = rp[i]; - u[i] = sav; - - zzz = GSM_MULT_R(rpi, di); - sav = GSM_ADD( ui, zzz); - - zzz = GSM_MULT_R(rpi, ui); - di = GSM_ADD( di, zzz ); - } - - *s = di; - } -} - -#if defined(USE_FLOAT_MUL) && defined(FAST) - -static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s), - struct gsm_state * S, - register word * rp, /* [0..7] IN */ - register int k_n, /* k_end - k_start */ - register word * s /* [0..n-1] IN/OUT */ -) -{ - register word * u = S->u; - register int i; - - float uf[8], - rpf[8]; - - register float scalef = 3.0517578125e-5; - register float sav, di, temp; - - for (i = 0; i < 8; ++i) { - uf[i] = u[i]; - rpf[i] = rp[i] * scalef; - } - for (; k_n--; s++) { - sav = di = *s; - for (i = 0; i < 8; ++i) { - register float rpfi = rpf[i]; - register float ufi = uf[i]; - - uf[i] = sav; - temp = rpfi * di + ufi; - di += rpfi * ufi; - sav = temp; - } - *s = di; - } - for (i = 0; i < 8; ++i) u[i] = uf[i]; -} -#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */ - -static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr), - struct gsm_state * S, - register word * rrp, /* [0..7] IN */ - register int k, /* k_end - k_start */ - register word * wt, /* [0..k-1] IN */ - register word * sr /* [0..k-1] OUT */ -) -{ - register word * v = S->v; - register int i; - register word sri, tmp1, tmp2; - register longword ltmp; /* for GSM_ADD & GSM_SUB */ - - while (k--) { - sri = *wt++; - for (i = 8; i--;) { - - /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) ); - */ - tmp1 = rrp[i]; - tmp2 = v[i]; - tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD - ? MAX_WORD - : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2 - + 16384) >> 15)) ; - - sri = GSM_SUB( sri, tmp2 ); - - /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) ); - */ - tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD - ? MAX_WORD - : 0x0FFFF & (( (longword)tmp1 * (longword)sri - + 16384) >> 15)) ; - - v[i+1] = GSM_ADD( v[i], tmp1); - } - *sr++ = v[0] = sri; - } -} - - -#if defined(FAST) && defined(USE_FLOAT_MUL) - -static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr), - struct gsm_state * S, - register word * rrp, /* [0..7] IN */ - register int k, /* k_end - k_start */ - register word * wt, /* [0..k-1] IN */ - register word * sr /* [0..k-1] OUT */ -) -{ - register word * v = S->v; - register int i; - - float va[9], rrpa[8]; - register float scalef = 3.0517578125e-5, temp; - - for (i = 0; i < 8; ++i) { - va[i] = v[i]; - rrpa[i] = (float)rrp[i] * scalef; - } - while (k--) { - register float sri = *wt++; - for (i = 8; i--;) { - sri -= rrpa[i] * va[i]; - if (sri < -32768.) sri = -32768.; - else if (sri > 32767.) sri = 32767.; - - temp = va[i] + rrpa[i] * sri; - if (temp < -32768.) temp = -32768.; - else if (temp > 32767.) temp = 32767.; - va[i+1] = temp; - } - *sr++ = va[0] = sri; - } - for (i = 0; i < 9; ++i) v[i] = va[i]; -} - -#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */ - -void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s), - - struct gsm_state * S, - - word * LARc, /* coded log area ratio [0..7] IN */ - word * s /* signal [0..159] IN/OUT */ -) -{ - word * LARpp_j = S->LARpp[ S->j ]; - word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ]; - - word LARp[8]; - -#undef FILTER -#if defined(FAST) && defined(USE_FLOAT_MUL) -# define FILTER (* (S->fast \ - ? Fast_Short_term_analysis_filtering \ - : Short_term_analysis_filtering )) - -#else -# define FILTER Short_term_analysis_filtering -#endif - - Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j ); - - Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, s); - - Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 14, s + 13); - - Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, s + 27); - - Coefficients_40_159( LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 120, s + 40); -} - -void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s), - struct gsm_state * S, - - word * LARcr, /* received log area ratios [0..7] IN */ - word * wt, /* received d [0..159] IN */ - - word * s /* signal s [0..159] OUT */ -) -{ - word * LARpp_j = S->LARpp[ S->j ]; - word * LARpp_j_1 = S->LARpp[ S->j ^=1 ]; - - word LARp[8]; - -#undef FILTER -#if defined(FAST) && defined(USE_FLOAT_MUL) - -# define FILTER (* (S->fast \ - ? Fast_Short_term_synthesis_filtering \ - : Short_term_synthesis_filtering )) -#else -# define FILTER Short_term_synthesis_filtering -#endif - - Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j ); - - Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, wt, s ); - - Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 14, wt + 13, s + 13 ); - - Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, wt + 27, s + 27 ); - - Coefficients_40_159( LARpp_j, LARp ); - LARp_to_rp( LARp ); - FILTER(S, LARp, 120, wt + 40, s + 40); -} |