summaryrefslogtreecommitdiff
path: root/gr-digital/python/ofdm_sync_ml.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-digital/python/ofdm_sync_ml.py')
-rw-r--r--gr-digital/python/ofdm_sync_ml.py165
1 files changed, 165 insertions, 0 deletions
diff --git a/gr-digital/python/ofdm_sync_ml.py b/gr-digital/python/ofdm_sync_ml.py
new file mode 100644
index 000000000..7c75d7f1d
--- /dev/null
+++ b/gr-digital/python/ofdm_sync_ml.py
@@ -0,0 +1,165 @@
+#!/usr/bin/env python
+#
+# Copyright 2007,2008 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+import math
+from gnuradio import gr
+
+class ofdm_sync_ml(gr.hier_block2):
+ def __init__(self, fft_length, cp_length, snr, kstime, logging):
+ ''' Maximum Likelihood OFDM synchronizer:
+ J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation
+ of Time and Frequency Offset in OFDM Systems," IEEE Trans.
+ Signal Processing, vol. 45, no. 7, pp. 1800-1805, 1997.
+ '''
+
+ gr.hier_block2.__init__(self, "ofdm_sync_ml",
+ gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
+ gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature
+
+ self.input = gr.add_const_cc(0)
+
+ SNR = 10.0**(snr/10.0)
+ rho = SNR / (SNR + 1.0)
+ symbol_length = fft_length + cp_length
+
+ # ML Sync
+
+ # Energy Detection from ML Sync
+
+ self.connect(self, self.input)
+
+ # Create a delay line
+ self.delay = gr.delay(gr.sizeof_gr_complex, fft_length)
+ self.connect(self.input, self.delay)
+
+ # magnitude squared blocks
+ self.magsqrd1 = gr.complex_to_mag_squared()
+ self.magsqrd2 = gr.complex_to_mag_squared()
+ self.adder = gr.add_ff()
+
+ moving_sum_taps = [rho/2 for i in range(cp_length)]
+ self.moving_sum_filter = gr.fir_filter_fff(1,moving_sum_taps)
+
+ self.connect(self.input,self.magsqrd1)
+ self.connect(self.delay,self.magsqrd2)
+ self.connect(self.magsqrd1,(self.adder,0))
+ self.connect(self.magsqrd2,(self.adder,1))
+ self.connect(self.adder,self.moving_sum_filter)
+
+
+ # Correlation from ML Sync
+ self.conjg = gr.conjugate_cc();
+ self.mixer = gr.multiply_cc();
+
+ movingsum2_taps = [1.0 for i in range(cp_length)]
+ self.movingsum2 = gr.fir_filter_ccf(1,movingsum2_taps)
+
+ # Correlator data handler
+ self.c2mag = gr.complex_to_mag()
+ self.angle = gr.complex_to_arg()
+ self.connect(self.input,(self.mixer,1))
+ self.connect(self.delay,self.conjg,(self.mixer,0))
+ self.connect(self.mixer,self.movingsum2,self.c2mag)
+ self.connect(self.movingsum2,self.angle)
+
+ # ML Sync output arg, need to find maximum point of this
+ self.diff = gr.sub_ff()
+ self.connect(self.c2mag,(self.diff,0))
+ self.connect(self.moving_sum_filter,(self.diff,1))
+
+ #ML measurements input to sampler block and detect
+ self.f2c = gr.float_to_complex()
+ self.pk_detect = gr.peak_detector_fb(0.2, 0.25, 30, 0.0005)
+ self.sample_and_hold = gr.sample_and_hold_ff()
+
+ # use the sync loop values to set the sampler and the NCO
+ # self.diff = theta
+ # self.angle = epsilon
+
+ self.connect(self.diff, self.pk_detect)
+
+ # The DPLL corrects for timing differences between CP correlations
+ use_dpll = 0
+ if use_dpll:
+ self.dpll = gr.dpll_bb(float(symbol_length),0.01)
+ self.connect(self.pk_detect, self.dpll)
+ self.connect(self.dpll, (self.sample_and_hold,1))
+ else:
+ self.connect(self.pk_detect, (self.sample_and_hold,1))
+
+ self.connect(self.angle, (self.sample_and_hold,0))
+
+ ################################
+ # correlate against known symbol
+ # This gives us the same timing signal as the PN sync block only on the preamble
+ # we don't use the signal generated from the CP correlation because we don't want
+ # to readjust the timing in the middle of the packet or we ruin the equalizer settings.
+ kstime = [k.conjugate() for k in kstime]
+ kstime.reverse()
+ self.kscorr = gr.fir_filter_ccc(1, kstime)
+ self.corrmag = gr.complex_to_mag_squared()
+ self.div = gr.divide_ff()
+
+ # The output signature of the correlation has a few spikes because the rest of the
+ # system uses the repeated preamble symbol. It needs to work that generically if
+ # anyone wants to use this against a WiMAX-like signal since it, too, repeats.
+ # The output theta of the correlator above is multiplied with this correlation to
+ # identify the proper peak and remove other products in this cross-correlation
+ self.threshold_factor = 0.1
+ self.slice = gr.threshold_ff(self.threshold_factor, self.threshold_factor, 0)
+ self.f2b = gr.float_to_char()
+ self.b2f = gr.char_to_float()
+ self.mul = gr.multiply_ff()
+
+ # Normalize the power of the corr output by the energy. This is not really needed
+ # and could be removed for performance, but it makes for a cleaner signal.
+ # if this is removed, the threshold value needs adjustment.
+ self.connect(self.input, self.kscorr, self.corrmag, (self.div,0))
+ self.connect(self.moving_sum_filter, (self.div,1))
+
+ self.connect(self.div, (self.mul,0))
+ self.connect(self.pk_detect, self.b2f, (self.mul,1))
+ self.connect(self.mul, self.slice)
+
+ # Set output signals
+ # Output 0: fine frequency correction value
+ # Output 1: timing signal
+ self.connect(self.sample_and_hold, (self,0))
+ self.connect(self.slice, self.f2b, (self,1))
+
+
+ if logging:
+ self.connect(self.moving_sum_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-energy_f.dat"))
+ self.connect(self.diff, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-theta_f.dat"))
+ self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-epsilon_f.dat"))
+ self.connect(self.corrmag, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-corrmag_f.dat"))
+ self.connect(self.kscorr, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-kscorr_c.dat"))
+ self.connect(self.div, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-div_f.dat"))
+ self.connect(self.mul, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-mul_f.dat"))
+ self.connect(self.slice, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-slice_f.dat"))
+ self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-peaks_b.dat"))
+ if use_dpll:
+ self.connect(self.dpll, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-dpll_b.dat"))
+
+ self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-sample_and_hold_f.dat"))
+ self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-input_c.dat"))
+