diff options
Diffstat (limited to 'gr-digital/lib/digital_mpsk_receiver_cc.cc')
-rw-r--r-- | gr-digital/lib/digital_mpsk_receiver_cc.cc | 316 |
1 files changed, 316 insertions, 0 deletions
diff --git a/gr-digital/lib/digital_mpsk_receiver_cc.cc b/gr-digital/lib/digital_mpsk_receiver_cc.cc new file mode 100644 index 000000000..363b86c9f --- /dev/null +++ b/gr-digital/lib/digital_mpsk_receiver_cc.cc @@ -0,0 +1,316 @@ +/* -*- c++ -*- */ +/* + * Copyright 2005,2006,2007,2010,2011 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <gr_io_signature.h> +#include <gr_prefs.h> +#include <digital_mpsk_receiver_cc.h> +#include <stdexcept> +#include <gr_math.h> +#include <gr_expj.h> +#include <gri_mmse_fir_interpolator_cc.h> + + +#define M_TWOPI (2*M_PI) +#define VERBOSE_MM 0 // Used for debugging symbol timing loop +#define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking + +// Public constructor + +digital_mpsk_receiver_cc_sptr +digital_make_mpsk_receiver_cc(unsigned int M, float theta, + float loop_bw, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel) +{ + return gnuradio::get_initial_sptr(new digital_mpsk_receiver_cc (M, theta, + loop_bw, + fmin, fmax, + mu, gain_mu, + omega, gain_omega, + omega_rel)); +} + +digital_mpsk_receiver_cc::digital_mpsk_receiver_cc (unsigned int M, float theta, + float loop_bw, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, + float omega_rel) + : gr_block ("mpsk_receiver_cc", + gr_make_io_signature (1, 1, sizeof (gr_complex)), + gr_make_io_signature (1, 1, sizeof (gr_complex))), + gri_control_loop(loop_bw, fmax, fmin), + d_M(M), d_theta(theta), + d_current_const_point(0), + d_mu(mu), d_gain_mu(gain_mu), d_gain_omega(gain_omega), + d_omega_rel(omega_rel), d_max_omega(0), d_min_omega(0), + d_p_2T(0), d_p_1T(0), d_p_0T(0), d_c_2T(0), d_c_1T(0), d_c_0T(0) +{ + d_interp = new gri_mmse_fir_interpolator_cc(); + d_dl_idx = 0; + + set_omega(omega); + + if (omega <= 0.0) + throw std::out_of_range ("clock rate must be > 0"); + if (gain_mu < 0 || gain_omega < 0) + throw std::out_of_range ("Gains must be non-negative"); + + assert(d_interp->ntaps() <= DLLEN); + + // zero double length delay line. + for (unsigned int i = 0; i < 2 * DLLEN; i++) + d_dl[i] = gr_complex(0.0,0.0); + + // build the constellation vector from M + make_constellation(); + + // Select a phase detector and a decision maker for the modulation order + switch(d_M) { + case 2: // optimized algorithms for BPSK + d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_bpsk; //bpsk; + d_decision = &digital_mpsk_receiver_cc::decision_bpsk; + break; + + case 4: // optimized algorithms for QPSK + d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_qpsk; //qpsk; + d_decision = &digital_mpsk_receiver_cc::decision_qpsk; + break; + + default: // generic algorithms for any M (power of 2?) but not pretty + d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_generic; + d_decision = &digital_mpsk_receiver_cc::decision_generic; + break; + } +} + +digital_mpsk_receiver_cc::~digital_mpsk_receiver_cc () +{ + delete d_interp; +} + +void +digital_mpsk_receiver_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) +{ + unsigned ninputs = ninput_items_required.size(); + for (unsigned i=0; i < ninputs; i++) + ninput_items_required[i] = (int) ceil((noutput_items * d_omega) + d_interp->ntaps()); +} + +// FIXME add these back in an test difference in performance +float +digital_mpsk_receiver_cc::phase_error_detector_qpsk(gr_complex sample) const +{ + float phase_error = 0; + if(fabsf(sample.real()) > fabsf(sample.imag())) { + if(sample.real() > 0) + phase_error = -sample.imag(); + else + phase_error = sample.imag(); + } + else { + if(sample.imag() > 0) + phase_error = sample.real(); + else + phase_error = -sample.real(); + } + + return phase_error; +} + +float +digital_mpsk_receiver_cc::phase_error_detector_bpsk(gr_complex sample) const +{ + return -(sample.real()*sample.imag()); +} + +float digital_mpsk_receiver_cc::phase_error_detector_generic(gr_complex sample) const +{ + //return gr_fast_atan2f(sample*conj(d_constellation[d_current_const_point])); + return -arg(sample*conj(d_constellation[d_current_const_point])); +} + +unsigned int +digital_mpsk_receiver_cc::decision_bpsk(gr_complex sample) const +{ + return (gr_branchless_binary_slicer(sample.real()) ^ 1); + //return gr_binary_slicer(sample.real()) ^ 1; +} + +unsigned int +digital_mpsk_receiver_cc::decision_qpsk(gr_complex sample) const +{ + unsigned int index; + + //index = gr_branchless_quad_0deg_slicer(sample); + index = gr_quad_0deg_slicer(sample); + return index; +} + +unsigned int +digital_mpsk_receiver_cc::decision_generic(gr_complex sample) const +{ + unsigned int min_m = 0; + float min_s = 65535; + + // Develop all possible constellation points and find the one that minimizes + // the Euclidean distance (error) with the sample + for(unsigned int m=0; m < d_M; m++) { + gr_complex diff = norm(d_constellation[m] - sample); + + if(fabs(diff.real()) < min_s) { + min_s = fabs(diff.real()); + min_m = m; + } + } + // Return the index of the constellation point that minimizes the error + return min_m; +} + + +void +digital_mpsk_receiver_cc::make_constellation() +{ + for(unsigned int m=0; m < d_M; m++) { + d_constellation.push_back(gr_expj((M_TWOPI/d_M)*m)); + } +} + +void +digital_mpsk_receiver_cc::mm_sampler(const gr_complex symbol) +{ + gr_complex sample, nco; + + d_mu--; // skip a number of symbols between sampling + d_phase += d_freq; // increment the phase based on the frequency of the rotation + + // Keep phase clamped and not walk to infinity + while(d_phase > M_TWOPI) + d_phase -= M_TWOPI; + while(d_phase < -M_TWOPI) + d_phase += M_TWOPI; + + nco = gr_expj(d_phase+d_theta); // get the NCO value for derotating the current sample + sample = nco*symbol; // get the downconverted symbol + + // Fill up the delay line for the interpolator + d_dl[d_dl_idx] = sample; + d_dl[(d_dl_idx + DLLEN)] = sample; // put this in the second half of the buffer for overflows + d_dl_idx = (d_dl_idx+1) % DLLEN; // Keep the delay line index in bounds +} + +void +digital_mpsk_receiver_cc::mm_error_tracking(gr_complex sample) +{ + gr_complex u, x, y; + float mm_error = 0; + + // Make sample timing corrections + + // set the delayed samples + d_p_2T = d_p_1T; + d_p_1T = d_p_0T; + d_p_0T = sample; + d_c_2T = d_c_1T; + d_c_1T = d_c_0T; + + d_current_const_point = (*this.*d_decision)(d_p_0T); // make a decision on the sample value + d_c_0T = d_constellation[d_current_const_point]; + + x = (d_c_0T - d_c_2T) * conj(d_p_1T); + y = (d_p_0T - d_p_2T) * conj(d_c_1T); + u = y - x; + mm_error = u.real(); // the error signal is in the real part + mm_error = gr_branchless_clip(mm_error, 1.0); // limit mm_val + + d_omega = d_omega + d_gain_omega * mm_error; // update omega based on loop error + d_omega = d_omega_mid + gr_branchless_clip(d_omega-d_omega_mid, d_omega_rel); // make sure we don't walk away + + d_mu += d_omega + d_gain_mu * mm_error; // update mu based on loop error + +#if VERBOSE_MM + printf("mm: mu: %f omega: %f mm_error: %f sample: %f+j%f constellation: %f+j%f\n", + d_mu, d_omega, mm_error, sample.real(), sample.imag(), + d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag()); +#endif +} + + +void +digital_mpsk_receiver_cc::phase_error_tracking(gr_complex sample) +{ + float phase_error = 0; + + // Make phase and frequency corrections based on sampled value + phase_error = (*this.*d_phase_error_detector)(sample); + + advance_loop(phase_error); + phase_wrap(); + frequency_limit(); + +#if VERBOSE_COSTAS + printf("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f constellation: %f+j%f\n", + phase_error, d_phase, d_freq, sample.real(), sample.imag(), + d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag()); +#endif +} + +int +digital_mpsk_receiver_cc::general_work (int noutput_items, + gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, + gr_vector_void_star &output_items) +{ + const gr_complex *in = (const gr_complex *) input_items[0]; + gr_complex *out = (gr_complex *) output_items[0]; + + int i=0, o=0; + + while((o < noutput_items) && (i < ninput_items[0])) { + while((d_mu > 1) && (i < ninput_items[0])) { + mm_sampler(in[i]); // puts symbols into a buffer and adjusts d_mu + i++; + } + + if(i < ninput_items[0]) { + gr_complex interp_sample = d_interp->interpolate(&d_dl[d_dl_idx], d_mu); + + mm_error_tracking(interp_sample); // corrects M&M sample time + phase_error_tracking(interp_sample); // corrects phase and frequency offsets + + out[o++] = interp_sample; + } + } + + #if 0 + printf("ninput_items: %d noutput_items: %d consuming: %d returning: %d\n", + ninput_items[0], noutput_items, i, o); + #endif + + consume_each(i); + return o; +} |