summaryrefslogtreecommitdiff
path: root/gr-digital/examples/example_timing.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-digital/examples/example_timing.py')
-rwxr-xr-xgr-digital/examples/example_timing.py211
1 files changed, 211 insertions, 0 deletions
diff --git a/gr-digital/examples/example_timing.py b/gr-digital/examples/example_timing.py
new file mode 100755
index 000000000..fd86acfb1
--- /dev/null
+++ b/gr-digital/examples/example_timing.py
@@ -0,0 +1,211 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, digital
+from gnuradio import eng_notation
+from gnuradio.eng_option import eng_option
+from optparse import OptionParser
+
+try:
+ import scipy
+except ImportError:
+ print "Error: could not import scipy (http://www.scipy.org/)"
+ sys.exit(1)
+
+try:
+ import pylab
+except ImportError:
+ print "Error: could not import pylab (http://matplotlib.sourceforge.net/)"
+ sys.exit(1)
+
+from scipy import fftpack
+
+class example_timing(gr.top_block):
+ def __init__(self, N, sps, rolloff, ntaps, bw, noise,
+ foffset, toffset, poffset, mode=0):
+ gr.top_block.__init__(self)
+
+ rrc_taps = gr.firdes.root_raised_cosine(
+ sps, sps, 1.0, rolloff, ntaps)
+
+ gain = 2*scipy.pi/100.0
+ nfilts = 32
+ rrc_taps_rx = gr.firdes.root_raised_cosine(
+ nfilts, sps*nfilts, 1.0, rolloff, ntaps*nfilts)
+
+ data = 2.0*scipy.random.randint(0, 2, N) - 1.0
+ data = scipy.exp(1j*poffset) * data
+
+ self.src = gr.vector_source_c(data.tolist(), False)
+ self.rrc = gr.interp_fir_filter_ccf(sps, rrc_taps)
+ self.chn = gr.channel_model(noise, foffset, toffset)
+ self.off = gr.fractional_interpolator_cc(0.20, 1.0)
+
+ if mode == 0:
+ self.clk = gr.pfb_clock_sync_ccf(sps, gain, rrc_taps_rx,
+ nfilts, nfilts//2, 3.5)
+ self.taps = self.clk.get_taps()
+ self.dtaps = self.clk.get_diff_taps()
+
+ self.vsnk_err = gr.vector_sink_f()
+ self.vsnk_rat = gr.vector_sink_f()
+ self.vsnk_phs = gr.vector_sink_f()
+
+ self.connect((self.clk,1), self.vsnk_err)
+ self.connect((self.clk,2), self.vsnk_rat)
+ self.connect((self.clk,3), self.vsnk_phs)
+
+ else: # mode == 1
+ mu = 0.5
+ gain_mu = 0.1
+ gain_omega = 0.25*gain_mu*gain_mu
+ omega_rel_lim = 0.02
+ self.clk = digital.clock_recovery_mm_cc(sps, gain_omega,
+ mu, gain_mu,
+ omega_rel_lim)
+
+ self.vsnk_err = gr.vector_sink_f()
+
+ self.connect((self.clk,1), self.vsnk_err)
+
+ self.vsnk_src = gr.vector_sink_c()
+ self.vsnk_clk = gr.vector_sink_c()
+
+ self.connect(self.src, self.rrc, self.chn, self.off, self.clk, self.vsnk_clk)
+ self.connect(self.off, self.vsnk_src)
+
+
+def main():
+ parser = OptionParser(option_class=eng_option, conflict_handler="resolve")
+ parser.add_option("-N", "--nsamples", type="int", default=2000,
+ help="Set the number of samples to process [default=%default]")
+ parser.add_option("-S", "--sps", type="int", default=4,
+ help="Set the samples per symbol [default=%default]")
+ parser.add_option("-r", "--rolloff", type="eng_float", default=0.35,
+ help="Set the rolloff factor [default=%default]")
+ parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0,
+ help="Set the loop bandwidth [default=%default]")
+ parser.add_option("-n", "--ntaps", type="int", default=45,
+ help="Set the number of taps in the filters [default=%default]")
+ parser.add_option("", "--noise", type="eng_float", default=0.0,
+ help="Set the simulation noise voltage [default=%default]")
+ parser.add_option("-f", "--foffset", type="eng_float", default=0.0,
+ help="Set the simulation's normalized frequency offset (in Hz) [default=%default]")
+ parser.add_option("-t", "--toffset", type="eng_float", default=1.0,
+ help="Set the simulation's timing offset [default=%default]")
+ parser.add_option("-p", "--poffset", type="eng_float", default=0.0,
+ help="Set the simulation's phase offset [default=%default]")
+ parser.add_option("-M", "--mode", type="int", default=0,
+ help="Set the recovery mode (0: polyphase, 1: M&M) [default=%default]")
+ (options, args) = parser.parse_args ()
+
+ # Adjust N for the interpolation by sps
+ options.nsamples = options.nsamples // options.sps
+
+ # Set up the program-under-test
+ put = example_timing(options.nsamples, options.sps, options.rolloff,
+ options.ntaps, options.bandwidth, options.noise,
+ options.foffset, options.toffset, options.poffset,
+ options.mode)
+ put.run()
+
+ if options.mode == 0:
+ data_src = scipy.array(put.vsnk_src.data()[20:])
+ data_clk = scipy.array(put.vsnk_clk.data()[20:])
+
+ data_err = scipy.array(put.vsnk_err.data()[20:])
+ data_rat = scipy.array(put.vsnk_rat.data()[20:])
+ data_phs = scipy.array(put.vsnk_phs.data()[20:])
+
+ f1 = pylab.figure(1, figsize=(12,10), facecolor='w')
+
+ # Plot the IQ symbols
+ s1 = f1.add_subplot(2,2,1)
+ s1.plot(data_src.real, data_src.imag, "bo")
+ s1.plot(data_clk.real, data_clk.imag, "ro")
+ s1.set_title("IQ")
+ s1.set_xlabel("Real part")
+ s1.set_ylabel("Imag part")
+ s1.set_xlim([-2, 2])
+ s1.set_ylim([-2, 2])
+
+ # Plot the symbols in time
+ s2 = f1.add_subplot(2,2,2)
+ s2.plot(data_src.real, "bo-")
+ s2.plot(data_clk.real, "ro")
+ s2.set_title("Symbols")
+ s2.set_xlabel("Samples")
+ s2.set_ylabel("Real Part of Signals")
+
+ # Plot the clock recovery loop's error
+ s3 = f1.add_subplot(2,2,3)
+ s3.plot(data_err)
+ s3.set_title("Clock Recovery Loop Error")
+ s3.set_xlabel("Samples")
+ s3.set_ylabel("Error")
+
+ # Plot the clock recovery loop's error
+ s4 = f1.add_subplot(2,2,4)
+ s4.plot(data_phs)
+ s4.set_title("Clock Recovery Loop Filter Phase")
+ s4.set_xlabel("Samples")
+ s4.set_ylabel("Filter Phase")
+
+
+ diff_taps = put.dtaps
+ ntaps = len(diff_taps[0])
+ nfilts = len(diff_taps)
+ t = scipy.arange(0, ntaps*nfilts)
+
+ f3 = pylab.figure(3, figsize=(12,10), facecolor='w')
+ s31 = f3.add_subplot(2,1,1)
+ s32 = f3.add_subplot(2,1,2)
+ s31.set_title("Differential Filters")
+ s32.set_title("FFT of Differential Filters")
+
+ for i,d in enumerate(diff_taps):
+ D = 20.0*scipy.log10(abs(fftpack.fftshift(fftpack.fft(d, 10000))))
+ s31.plot(t[i::nfilts].real, d, "-o")
+ s32.plot(D)
+
+ # If testing the M&M clock recovery loop
+ else:
+ data_src = scipy.array(put.vsnk_src.data()[20:])
+ data_clk = scipy.array(put.vsnk_clk.data()[20:])
+
+ data_err = scipy.array(put.vsnk_err.data()[20:])
+
+ f1 = pylab.figure(1, figsize=(12,10), facecolor='w')
+
+ # Plot the IQ symbols
+ s1 = f1.add_subplot(2,2,1)
+ s1.plot(data_src.real, data_src.imag, "o")
+ s1.plot(data_clk.real, data_clk.imag, "ro")
+ s1.set_title("IQ")
+ s1.set_xlabel("Real part")
+ s1.set_ylabel("Imag part")
+ s1.set_xlim([-2, 2])
+ s1.set_ylim([-2, 2])
+
+ # Plot the symbols in time
+ s2 = f1.add_subplot(2,2,2)
+ s2.plot(data_src.real, "o-")
+ s2.plot(data_clk.real, "ro")
+ s2.set_title("Symbols")
+ s2.set_xlabel("Samples")
+ s2.set_ylabel("Real Part of Signals")
+
+ # Plot the clock recovery loop's error
+ s3 = f1.add_subplot(2,2,3)
+ s3.plot(data_err)
+ s3.set_title("Clock Recovery Loop Error")
+ s3.set_xlabel("Samples")
+ s3.set_ylabel("Error")
+
+ pylab.show()
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+