summaryrefslogtreecommitdiff
path: root/gr-analog/lib/cpm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gr-analog/lib/cpm.cc')
-rw-r--r--gr-analog/lib/cpm.cc221
1 files changed, 221 insertions, 0 deletions
diff --git a/gr-analog/lib/cpm.cc b/gr-analog/lib/cpm.cc
new file mode 100644
index 000000000..618475cec
--- /dev/null
+++ b/gr-analog/lib/cpm.cc
@@ -0,0 +1,221 @@
+/* -*- c++ -*- */
+/*
+ * Copyright 2010,2012 Free Software Foundation, Inc.
+ *
+ * GNU Radio is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3, or (at your option)
+ * any later version.
+ *
+ * GNU Radio is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNU Radio; see the file COPYING. If not, write to
+ * the Free Software Foundation, Inc., 51 Franklin Street,
+ * Boston, MA 02110-1301, USA.
+ */
+
+// Calculate the taps for the CPM phase responses
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <cmath>
+#include <cfloat>
+#include <analog/cpm.h>
+
+//gives us erf on compilers without it
+#include <boost/math/special_functions/erf.hpp>
+namespace bm = boost::math;
+
+namespace gr {
+ namespace analog {
+
+#ifndef M_TWOPI
+# define M_TWOPI (2*M_PI)
+#endif
+
+ //! Normalised sinc function, sinc(x)=sin(pi*x)/pi*x
+ inline double
+ sinc(double x)
+ {
+ if(x == 0) {
+ return 1.0;
+ }
+ return sin(M_PI * x) / (M_PI * x);
+ }
+
+
+ //! Taps for L-RC CPM (Raised cosine of length L symbols)
+ std::vector<float>
+ generate_cpm_lrc_taps(unsigned samples_per_sym, unsigned L)
+ {
+ std::vector<float> taps(samples_per_sym * L, 1.0/L/samples_per_sym);
+ for(unsigned i = 0; i < samples_per_sym * L; i++) {
+ taps[i] *= 1 - cos(M_TWOPI * i / L / samples_per_sym);
+ }
+
+ return taps;
+ }
+
+
+ /*! Taps for L-SRC CPM (Spectral raised cosine of length L symbols).
+ *
+ * L-SRC has a time-continuous phase response function of
+ *
+ * g(t) = 1/LT * sinc(2t/LT) * cos(beta * 2pi t / LT) / (1 - (4beta / LT * t)^2)
+ *
+ * which is the Fourier transform of a cos-rolloff function with rolloff
+ * beta, and looks like a sinc-function, multiplied with a rolloff term.
+ * We return the main lobe of the sinc, i.e., everything between the
+ * zero crossings.
+ * The time-discrete IR is thus
+ *
+ * g(k) = 1/Ls * sinc(2k/Ls) * cos(beta * pi k / Ls) / (1 - (4beta / Ls * k)^2)
+ * where k = 0...Ls-1
+ * and s = samples per symbol.
+ */
+ std::vector<float>
+ generate_cpm_lsrc_taps(unsigned samples_per_sym, unsigned L, double beta)
+ {
+ double Ls = (double) L * samples_per_sym;
+ std::vector<double> taps_d(L * samples_per_sym, 0.0);
+ std::vector<float> taps(L * samples_per_sym, 0.0);
+
+ double sum = 0;
+ for(unsigned i = 0; i < samples_per_sym * L; i++) {
+ double k = i - Ls/2; // Causal to acausal
+
+ taps_d[i] = 1.0 / Ls * sinc(2.0 * k / Ls);
+
+ // For k = +/-Ls/4*beta, the rolloff term's cos-function becomes zero
+ // and the whole thing converges to PI/4 (to prove this, use de
+ // l'hopital's rule).
+ if(fabs(fabs(k) - Ls/4/beta) < 2*DBL_EPSILON) {
+ taps_d[i] *= M_PI_4;
+ }
+ else {
+ double tmp = 4.0 * beta * k / Ls;
+ taps_d[i] *= cos(beta * M_TWOPI * k / Ls) / (1 - tmp * tmp);
+ }
+ sum += taps_d[i];
+ }
+
+ for(unsigned i = 0; i < samples_per_sym * L; i++) {
+ taps[i] = (float) taps_d[i] / sum;
+ }
+
+ return taps;
+ }
+
+ //! Taps for L-REC CPM (Rectangular pulse shape of length L symbols)
+ std::vector<float>
+ generate_cpm_lrec_taps(unsigned samples_per_sym, unsigned L)
+ {
+ return std::vector<float>(samples_per_sym * L, 1.0/L/samples_per_sym);
+ }
+
+ //! Helper function for TFM
+ double tfm_g0(double k, double sps)
+ {
+ if(fabs(k) < 2 * DBL_EPSILON) {
+ return 1.145393004159143; // 1 + pi^2/48 / sqrt(2)
+ }
+
+ const double pi2_24 = 0.411233516712057; // pi^2/24
+ double f = M_PI * k / sps;
+ return sinc(k/sps) - pi2_24 * (2 * sin(f) - 2*f*cos(f) - f*f*sin(f)) / (f*f*f);
+ }
+
+ //! Taps for TFM CPM (Tamed frequency modulation)
+ //
+ // See [2, Chapter 2.7.2].
+ //
+ // [2]: Anderson, Aulin and Sundberg; Digital Phase Modulation
+ std::vector<float>
+ generate_cpm_tfm_taps(unsigned sps, unsigned L)
+ {
+ unsigned causal_shift = sps * L / 2;
+ std::vector<double> taps_d(sps * L, 0.0);
+ std::vector<float> taps(sps * L, 0.0);
+
+ double sum = 0;
+ for(unsigned i = 0; i < sps * L; i++) {
+ double k = (double)(((int)i) - ((int)causal_shift)); // Causal to acausal
+
+ taps_d[i] = tfm_g0(k - sps, sps) +
+ 2 * tfm_g0(k, sps) +
+ tfm_g0(k + sps, sps);
+ sum += taps_d[i];
+ }
+
+ for(unsigned i = 0; i < sps * L; i++) {
+ taps[i] = (float) taps_d[i] / sum;
+ }
+
+ return taps;
+ }
+
+ //! Taps for Gaussian CPM. Phase response is truncated after \p L symbols.
+ // \p bt sets the 3dB-time-bandwidth product.
+ //
+ // Note: for h = 0.5, this is the phase response for GMSK.
+ //
+ // This C99-compatible formula for the taps is taken straight
+ // from [1, Chapter 9.2.3].
+ // A version in Q-notation can be found in [2, Chapter 2.7.2].
+ //
+ // [1]: Karl-Dirk Kammeyer; Nachrichtenübertragung, 4th Edition.
+ // [2]: Anderson, Aulin and Sundberg; Digital Phase Modulation
+ //
+ std::vector<float>
+ generate_cpm_gaussian_taps(unsigned samples_per_sym, unsigned L, double bt)
+ {
+ double Ls = (double) L * samples_per_sym;
+ std::vector<double> taps_d(L * samples_per_sym, 0.0);
+ std::vector<float> taps(L * samples_per_sym, 0.0);
+
+ // alpha = sqrt(2/ln(2)) * pi * BT
+ double alpha = 5.336446256636997 * bt;
+ for(unsigned i = 0; i < samples_per_sym * L; i++) {
+ double k = i - Ls/2; // Causal to acausal
+ taps_d[i] = (bm::erf(alpha * (k / samples_per_sym + 0.5)) -
+ bm::erf(alpha * (k / samples_per_sym - 0.5)))
+ * 0.5 / samples_per_sym;
+ taps[i] = (float) taps_d[i];
+ }
+
+ return taps;
+ }
+
+ std::vector<float>
+ cpm::phase_response(cpm_type type, unsigned samples_per_sym, unsigned L, double beta)
+ {
+ switch(type) {
+ case LRC:
+ return generate_cpm_lrc_taps(samples_per_sym, L);
+
+ case LSRC:
+ return generate_cpm_lsrc_taps(samples_per_sym, L, beta);
+
+ case LREC:
+ return generate_cpm_lrec_taps(samples_per_sym, L);
+
+ case TFM:
+ return generate_cpm_tfm_taps(samples_per_sym, L);
+
+ case GAUSSIAN:
+ return generate_cpm_gaussian_taps(samples_per_sym, L, beta);
+
+ default:
+ return generate_cpm_lrec_taps(samples_per_sym, 1);
+ }
+ }
+
+ } // namespace analog
+} // namespace gr
+