summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python')
-rwxr-xr-xgnuradio-examples/python/pfb/channelize.py2
-rwxr-xr-xgnuradio-examples/python/pfb/resampler.py95
-rwxr-xr-xgnuradio-examples/python/pfb/synth_filter.py71
-rwxr-xr-xgnuradio-examples/python/pfb/synth_to_chan.py105
4 files changed, 272 insertions, 1 deletions
diff --git a/gnuradio-examples/python/pfb/channelize.py b/gnuradio-examples/python/pfb/channelize.py
index 27d87e558..f845c05c6 100755
--- a/gnuradio-examples/python/pfb/channelize.py
+++ b/gnuradio-examples/python/pfb/channelize.py
@@ -36,7 +36,7 @@ class pfb_top_block(gr.top_block):
# Create a set of taps for the PFB channelizer
self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50,
- attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+ attenuation_dB=100, window=gr.firdes.WIN_BLACKMAN_hARRIS)
# Calculate the number of taps per channel for our own information
tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
diff --git a/gnuradio-examples/python/pfb/resampler.py b/gnuradio-examples/python/pfb/resampler.py
new file mode 100755
index 000000000..6be7cf14e
--- /dev/null
+++ b/gnuradio-examples/python/pfb/resampler.py
@@ -0,0 +1,95 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, blks2
+import scipy, pylab
+
+class mytb(gr.top_block):
+ def __init__(self, fs_in, fs_out, fc, N=10000):
+ gr.top_block.__init__(self)
+
+ rerate = float(fs_out) / float(fs_in)
+ print "Resampling from %f to %f by %f " %(fs_in, fs_out, rerate)
+
+ # Creating our own taps
+ taps = gr.firdes.low_pass_2(32, 32, 0.25, 0.1, 80)
+
+ self.src = gr.sig_source_c(fs_in, gr.GR_SIN_WAVE, fc, 1)
+ #self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1)
+ self.head = gr.head(gr.sizeof_gr_complex, N)
+
+ # A resampler with our taps
+ self.resamp_0 = blks2.pfb_arb_resampler_ccf(rerate, taps,
+ flt_size=32)
+
+ # A resampler that just needs a resampling rate.
+ # Filter is created for us and designed to cover
+ # entire bandwidth of the input signal.
+ # An optional atten=XX rate can be used here to
+ # specify the out-of-band rejection (default=80).
+ self.resamp_1 = blks2.pfb_arb_resampler_ccf(rerate)
+
+ self.snk_in = gr.vector_sink_c()
+ self.snk_0 = gr.vector_sink_c()
+ self.snk_1 = gr.vector_sink_c()
+
+ self.connect(self.src, self.head, self.snk_in)
+ self.connect(self.head, self.resamp_0, self.snk_0)
+ self.connect(self.head, self.resamp_1, self.snk_1)
+
+def main():
+ fs_in = 8000
+ fs_out = 20000
+ fc = 1000
+ N = 10000
+
+ tb = mytb(fs_in, fs_out, fc, N)
+ tb.run()
+
+
+ # Plot PSD of signals
+ nfftsize = 2048
+ fig1 = pylab.figure(1, figsize=(10,10), facecolor="w")
+ sp1 = fig1.add_subplot(2,1,1)
+ sp1.psd(tb.snk_in.data(), NFFT=nfftsize,
+ noverlap=nfftsize/4, Fs = fs_in)
+ sp1.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
+ sp1.set_xlim([-fs_in/2, fs_in/2])
+
+ sp2 = fig1.add_subplot(2,1,2)
+ sp2.psd(tb.snk_0.data(), NFFT=nfftsize,
+ noverlap=nfftsize/4, Fs = fs_out,
+ label="With our filter")
+ sp2.psd(tb.snk_1.data(), NFFT=nfftsize,
+ noverlap=nfftsize/4, Fs = fs_out,
+ label="With auto-generated filter")
+ sp2.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
+ sp2.set_xlim([-fs_out/2, fs_out/2])
+ sp2.legend()
+
+ # Plot signals in time
+ Ts_in = 1.0/fs_in
+ Ts_out = 1.0/fs_out
+ t_in = scipy.arange(0, len(tb.snk_in.data())*Ts_in, Ts_in)
+ t_out = scipy.arange(0, len(tb.snk_0.data())*Ts_out, Ts_out)
+
+ fig2 = pylab.figure(2, figsize=(10,10), facecolor="w")
+ sp21 = fig2.add_subplot(2,1,1)
+ sp21.plot(t_in, tb.snk_in.data())
+ sp21.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
+ sp21.set_xlim([t_in[100], t_in[200]])
+
+ sp22 = fig2.add_subplot(2,1,2)
+ sp22.plot(t_out, tb.snk_0.data(),
+ label="With our filter")
+ sp22.plot(t_out, tb.snk_1.data(),
+ label="With auto-generated filter")
+ sp22.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
+ r = float(fs_out)/float(fs_in)
+ sp22.set_xlim([t_out[r * 100], t_out[r * 200]])
+ sp22.legend()
+
+ pylab.show()
+
+if __name__ == "__main__":
+ main()
+
diff --git a/gnuradio-examples/python/pfb/synth_filter.py b/gnuradio-examples/python/pfb/synth_filter.py
new file mode 100755
index 000000000..a1562f9ea
--- /dev/null
+++ b/gnuradio-examples/python/pfb/synth_filter.py
@@ -0,0 +1,71 @@
+#!/usr/bin/env python
+#
+# Copyright 2010 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, blks2
+import scipy, pylab
+
+def main():
+ N = 1000000
+ fs = 8000
+
+ freqs = [100, 200, 300, 400, 500]
+ nchans = 7
+
+ sigs = list()
+ for fi in freqs:
+ s = gr.sig_source_c(fs, gr.GR_SIN_WAVE, fi, 1)
+ sigs.append(s)
+
+ taps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
+ print "Num. Taps = %d (taps per filter = %d)" % (len(taps),
+ len(taps)/nchans)
+ filtbank = gr.pfb_synthesis_filterbank_ccf(nchans, taps)
+
+ head = gr.head(gr.sizeof_gr_complex, N)
+ snk = gr.vector_sink_c()
+
+ tb = gr.top_block()
+ tb.connect(filtbank, head, snk)
+
+ for i,si in enumerate(sigs):
+ tb.connect(si, (filtbank, i))
+
+ tb.run()
+
+ if 1:
+ f1 = pylab.figure(1)
+ s1 = f1.add_subplot(1,1,1)
+ s1.plot(snk.data()[1000:])
+
+ fftlen = 2048
+ f2 = pylab.figure(2)
+ s2 = f2.add_subplot(1,1,1)
+ winfunc = scipy.blackman
+ s2.psd(snk.data()[10000:], NFFT=fftlen,
+ Fs = nchans*fs,
+ noverlap=fftlen/4,
+ window = lambda d: d*winfunc(fftlen))
+
+ pylab.show()
+
+if __name__ == "__main__":
+ main()
diff --git a/gnuradio-examples/python/pfb/synth_to_chan.py b/gnuradio-examples/python/pfb/synth_to_chan.py
new file mode 100755
index 000000000..1beda1a54
--- /dev/null
+++ b/gnuradio-examples/python/pfb/synth_to_chan.py
@@ -0,0 +1,105 @@
+#!/usr/bin/env python
+#
+# Copyright 2010 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, blks2
+import scipy, pylab
+
+def main():
+ N = 1000000
+ fs = 8000
+
+ freqs = [100, 200, 300, 400, 500]
+ nchans = 7
+
+ sigs = list()
+ fmtx = list()
+ for fi in freqs:
+ s = gr.sig_source_f(fs, gr.GR_SIN_WAVE, fi, 1)
+ fm = blks2.nbfm_tx (fs, 4*fs, max_dev=10000, tau=75e-6)
+ sigs.append(s)
+ fmtx.append(fm)
+
+ syntaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
+ print "Synthesis Num. Taps = %d (taps per filter = %d)" % (len(syntaps),
+ len(syntaps)/nchans)
+ chtaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
+ print "Channelizer Num. Taps = %d (taps per filter = %d)" % (len(chtaps),
+ len(chtaps)/nchans)
+ filtbank = gr.pfb_synthesis_filterbank_ccf(nchans, syntaps)
+ channelizer = blks2.pfb_channelizer_ccf(nchans, chtaps)
+
+ noise_level = 0.01
+ head = gr.head(gr.sizeof_gr_complex, N)
+ noise = gr.noise_source_c(gr.GR_GAUSSIAN, noise_level)
+ addnoise = gr.add_cc()
+ snk_synth = gr.vector_sink_c()
+
+ tb = gr.top_block()
+
+ tb.connect(noise, (addnoise,0))
+ tb.connect(filtbank, head, (addnoise, 1))
+ tb.connect(addnoise, channelizer)
+ tb.connect(addnoise, snk_synth)
+
+ snk = list()
+ for i,si in enumerate(sigs):
+ tb.connect(si, fmtx[i], (filtbank, i))
+
+ for i in xrange(nchans):
+ snk.append(gr.vector_sink_c())
+ tb.connect((channelizer, i), snk[i])
+
+ tb.run()
+
+ if 1:
+ channel = 1
+ data = snk[channel].data()[1000:]
+
+ f1 = pylab.figure(1)
+ s1 = f1.add_subplot(1,1,1)
+ s1.plot(data[10000:10200] )
+ s1.set_title(("Output Signal from Channel %d" % channel))
+
+ fftlen = 2048
+ winfunc = scipy.blackman
+ #winfunc = scipy.hamming
+
+ f2 = pylab.figure(2)
+ s2 = f2.add_subplot(1,1,1)
+ s2.psd(data, NFFT=fftlen,
+ Fs = nchans*fs,
+ noverlap=fftlen/4,
+ window = lambda d: d*winfunc(fftlen))
+ s2.set_title(("Output PSD from Channel %d" % channel))
+
+ f3 = pylab.figure(3)
+ s3 = f3.add_subplot(1,1,1)
+ s3.psd(snk_synth.data()[1000:], NFFT=fftlen,
+ Fs = nchans*fs,
+ noverlap=fftlen/4,
+ window = lambda d: d*winfunc(fftlen))
+ s3.set_title("Output of Synthesis Filter")
+
+ pylab.show()
+
+if __name__ == "__main__":
+ main()