diff options
Diffstat (limited to 'gnuradio-examples/python/volk_benchmark')
-rw-r--r-- | gnuradio-examples/python/volk_benchmark/README | 252 | ||||
-rwxr-xr-x | gnuradio-examples/python/volk_benchmark/volk_math.py | 152 | ||||
-rwxr-xr-x | gnuradio-examples/python/volk_benchmark/volk_plot.py | 169 | ||||
-rw-r--r-- | gnuradio-examples/python/volk_benchmark/volk_test_funcs.py | 171 | ||||
-rwxr-xr-x | gnuradio-examples/python/volk_benchmark/volk_types.py | 182 |
5 files changed, 0 insertions, 926 deletions
diff --git a/gnuradio-examples/python/volk_benchmark/README b/gnuradio-examples/python/volk_benchmark/README deleted file mode 100644 index 516fc15bd..000000000 --- a/gnuradio-examples/python/volk_benchmark/README +++ /dev/null @@ -1,252 +0,0 @@ -VOLK Benchmarking Scripts - -The Python programs in this directory are designed to help benchmark -and compare Volk enhancements to GNU Radio. There are two kinds of -scripts here: collecting data and displaying the data. - -Data collection is done by running a Volk testing script that will -populate a SQLite database file (volk_results.db by default). The -plotting utility provided here reads from the database files and plots -bar graphs to compare the different installations. - -These benchmarks can be used to compare previous versions of GNU -Radio to using Volk; they can be used to compare different Volk -proto-kernels, as well, by editing the volk_config file; or they could -be used to compare performance between different machines and/or -processors. - - -====================================================================== -Volk Profiling - -Before doing any kind of Volk benchmarking, it is important to run the -volk_profile program. The profiler will build a config file for the -best SIMD architecture for your processor. Run volk_profile that is -installed into $PREFIX/bin. This program tests all known Volk kernels -for each proto-kernel supported by the processor. When finished, it -will write to $HOME/.volk/volk_config the best architecture for the -VOLK function. This file is read when using a function to know the -best version of the function to execute. - -The volk_config file contains a line for each kernel, where each line -looks like: - - volk_<KERNEL_NAME> <ARCHITECTURE> - -The architecture will be something like (sse, sse2, sse3, avx, neon, -etc.), depending on your processor. - - -====================================================================== -Benchmark Tests - -There are currently two benchmark scripts defined for collecting -data. There is one that runs through the type conversions that have -been converted to Volk (volk_types.py) and the other runs through the -math operators converted to using Volk (volk_math.py). - -Script prototypes -Both have the same structure for use: - ----------------------------------------------------------------------- -./volk_<test>.py [-h] -L LABEL [-D DATABASE] [-N NITEMS] [-I ITERATIONS] - [--tests [{0,1,2,3} [{0,1,2,3} ...]]] [--list] - [--all] - -optional arguments: - -h, --help show this help message and exit - -L LABEL, --label LABEL - Label of database table [default: None] - -D DATABASE, --database DATABASE - Database file to store data in [default: - volk_results.db] - -N NITEMS, --nitems NITEMS - Number of items per iterations [default: 1000000000.0] - -I ITERATIONS, --iterations ITERATIONS - Number of iterations [default: 20] - --tests [{0,1,2,3} [{0,1,2,3} ...]] - A list of tests to run; can be a single test or a - space-separated list. - --list List the available tests - --all Run all tests ----------------------------------------------------------------------- - -To run, you specify the tests to run and a label to store along with -the results. To find out what the available tests are, use the -'--list' option. - -To specify a subset of tests, use the '--tests' with space-separated -list of tests numbers (e.g., --tests 0 2 4 9). - -Use the '--all' to run all tests. - -The label specified is used as an identifier for the benchmarking -currently being done. This is required as it is important in -organizing the data in the database (each label is its own -table). Usually, the label will specify the type of run being done, -such as "volk_aligned" or "v3_5_1". In these cases, the "volk_aligned" -label says that this is for a benchmarking using the GNU Radio version -that uses the aligned scheduler and Volk calls in the work -functions. The "v3_5_1" label is if you were benchmarking an installed -version 3.5.1 of GNU Radio, which is pre-Volk. These will then be -plotted against each other to see the timing differences. - -The 'database' option will output the results to a new database -file. This can be useful for separating the output of different runs -or of different benchmarks, such as the types versus the math scripts, -say, or to distinguish results from different computers. - -If rerun using the same database and label, the entries in the table -will simply be replaced by the new results. - -It is often useful to use the 'sqlitebrowser' program to interrogate -the database file farther, if you are interested in the structure or -the raw data. - -Other parameters of this script set the number of items to process and -number of iterations to use when computing the benchmarking -data. These default to 1 billion samples per iteration over 20 -iterations. Expect a default run to take a long time. Using the '-N' -and '-I' options can be used to change the runtime of the benchmarks -but are set high to remove problems of variance between iterations. - -====================================================================== -Plotting Results - -The volk_plot.py script reads a given database file and plots the -results. The default behavior is to read all of the labels stored in -the database and plot them as data sets on a bar graph. This shows the -average time taken to process the number of items given. - -The options for the plotting script are: - -usage: volk_plot.py [-h] [-D DATABASE] [-E] [-P {mean,min,max}] [-% table] - -Plot Volk performance results from a SQLite database. Run one of the volk -tests first (e.g, volk_math.py) - ----------------------------------------------------------------------- -optional arguments: - -h, --help show this help message and exit - -D DATABASE, --database DATABASE - Database file to read data from [default: - volk_results.db] - -E, --errorbars Show error bars (1 standard dev.) - -P {mean,min,max}, --plot {mean,min,max} - Set the type of plot to produce [default: mean] - -% table, --percent table - Show percent difference to the given type [default: - None] ----------------------------------------------------------------------- - -This script allows you to specify the database used (-D), but will -always read all rows from all tables from it and display them. You can -also turn on plotting error bars (1 standard deviation the mean). Be -careful, though, as some older versions of Matplotlib might have an -issue with this option. - -The mean time is only one possible statistic that we might be -interested in when looking at the data. It represents the average user -experience when running a given block. On the other hand, the minimum -runtime best represents the actual performance of a block given -minimal OS interruptions while running. Right now, the data collected -includes the mean, variance, min, and max over the number of -iterations given. Using the '-P' option, you can specify the type of -data to plot (mean, min, or max). - -Another useful way of looking at the data is to compare the percent -improvement of a benchmark compared to another. This is done using the -'-%' option with the provided table (or label) as the baseline. So if -we were interested in comparing how much the 'volk_aligned' was over -'v3_5_1', we would specify '-% v3_5_1' to see this. The plot would -then only show the percent speedup observed using Volk for each of the -blocks. - - -====================================================================== -Benchmarking Walkthrough - -This will walk through an example of benchmarking the new Volk -implementation versus the pre-Volk GNU Radio. It also shows how to -look at the SIMD optimized versions versus the generic -implementations. - -Since we introduced Volk in GNU Radio 3.5.2, we will use the following -labels for our data: - - 1.) volk_aligned: v3.5.2 with volk_profile results in .volk/volk_config - 2.) v3_5_2: v3.5.2 with the generic (non-SIMD) calls to Volk - 3.) v3_5_1: an installation of GNU Radio from version v3.5.1 - -We assume that we have installed two versions of GNU Radio. - - v3.5.2 installed into /opt/gr-3_5_2 - v3.5.1 installed into /opt/gr-3_5_1 - -To test cases 1 and 2 above, we have to run GNU Radio from the v3.5.2 -installation, so we set the following environmental variables. Note -that this is written for Ubuntu 11.10. These commands and directories -may have to be changed depending on your OS and versions. - - export LD_LIBRARY_PATH=/opt/gr-3_5_2/lib - export LD_LIBRARY_PATH=/opt/gr-3_5_2/lib/python2.7/dist-packages - -Now we can run the benchmark tests, so we will focus on the math -operators: - - ./volk_math.py -D volk_results_math.db --all -L volk_aligned - -When this finishes, the 'volk_results_math.db' will contain our -results for this run. - -We next want to run the generic, non-SIMD, calls. This can be done by -changing the Volk kernel settings in $HOME/.volk/volk_config. First, -make a backup of this file. Then edit it and change all architecture -calls (sse, sse2, etc.) to 'generic.' Now, Volk will only call the -generic versions of these functions. So we rerun the benchmark with: - - ./volk_math.py -D volk_results_math.db --all -L v3_5_2 - -Notice that the only thing changed here was the label to 'v3_5_2'. - -Next, we want to collect data for the non-Volk version of GNU -Radio. This is important because some internals to GNU Radio were made -when adding support for Volk, so it is nice to know what the -differences do to our performance. First, we set the environmental -variables to point to the v3.5.1 installation: - - export LD_LIBRARY_PATH=/opt/gr-3_5_1/lib - export LD_LIBRARY_PATH=/opt/gr-3_5_1/lib/python2.7/dist-packages - -And when we run the test, we use the same command line, but the GNU -Radio libraries and Python files used come from v3.5.1. We also change -the label to indicate the different version to store. - - ./volk_math.py -D volk_results_math.db --all -L v3_5_1 - -We now have a database populated with three tables for the three -different labels. We can plot them all together by simply running: - - ./volk_plot.py -D volk_results_math.db - -This will show the average run times for each of the three -configurations for all math functions tested. We might also be -interested to see the difference in performance from the v3.5.1 -version, so we can run: - - ./volk_plot.py -D volk_results_math.db -% v3_5_1 - -That will plot both the 'volk_aligned' and 'v3_5_2' as a percentage -improvement over v3_5_1. A positive value indicates that this version -runs faster than the v3.5.1 version. - - ----------------------------------------------------------------------- - -Another interesting test case could be to compare results on different -processors. So if you have different generation Intels, AMD, or -whatever, you can simply pass the .db file around and run the Volk -benchmark script to populate the database with different results. For -this, you would specify a label like '-L i7_2620M' that indicates the -processor type to uniquely ID the data. - diff --git a/gnuradio-examples/python/volk_benchmark/volk_math.py b/gnuradio-examples/python/volk_benchmark/volk_math.py deleted file mode 100755 index 8b0081387..000000000 --- a/gnuradio-examples/python/volk_benchmark/volk_math.py +++ /dev/null @@ -1,152 +0,0 @@ -#!/usr/bin/env python - -from gnuradio import gr -import argparse -from volk_test_funcs import * - -def multiply_const_cc(N): - k = 3.3 - op = gr.multiply_const_cc(k) - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 1, 1) - return tb - -###################################################################### - -def multiply_const_ff(N): - k = 3.3 - op = gr.multiply_const_ff(k) - tb = helper(N, op, gr.sizeof_float, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - -def multiply_cc(N): - op = gr.multiply_cc() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 2, 1) - return tb - -###################################################################### - -def multiply_ff(N): - op = gr.multiply_ff() - tb = helper(N, op, gr.sizeof_float, gr.sizeof_float, 2, 1) - return tb - -###################################################################### - -def add_ff(N): - op = gr.add_ff() - tb = helper(N, op, gr.sizeof_float, gr.sizeof_float, 2, 1) - return tb - -###################################################################### - -def conjugate_cc(N): - op = gr.conjugate_cc() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 1, 1) - return tb - -###################################################################### - -def multiply_conjugate_cc(N): - try: - op = gr.multiply_conjugate_cc() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 2, 1) - return tb - - except AttributeError: - class s(gr.hier_block2): - def __init__(self): - gr.hier_block2.__init__(self, "s", - gr.io_signature(2, 2, gr.sizeof_gr_complex), - gr.io_signature(1, 1, gr.sizeof_gr_complex)) - conj = gr.conjugate_cc() - mult = gr.multiply_cc() - self.connect((self,0), (mult,0)) - self.connect((self,1), conj, (mult,1)) - self.connect(mult, self) - - op = s() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 2, 1) - return tb - - -###################################################################### - -def run_tests(func, N, iters): - print("Running Test: {0}".format(func.__name__)) - try: - tb = func(N) - t = timeit(tb, iters) - res = format_results(func.__name__, t) - return res - except AttributeError: - print "\tCould not run test. Skipping." - return None - -def main(): - avail_tests = [multiply_const_cc, - multiply_const_ff, - multiply_cc, - multiply_ff, - add_ff, - conjugate_cc, - multiply_conjugate_cc] - - desc='Time an operation to compare with other implementations. \ - This program runs a simple GNU Radio flowgraph to test a \ - particular math function, mostly to compare the \ - Volk-optimized implementation versus a regular \ - implementation. The results are stored to an SQLite database \ - that can then be read by volk_plot.py to plot the differences.' - parser = argparse.ArgumentParser(description=desc) - parser.add_argument('-L', '--label', type=str, - required=True, default=None, - help='Label of database table [default: %(default)s]') - parser.add_argument('-D', '--database', type=str, - default="volk_results.db", - help='Database file to store data in [default: %(default)s]') - parser.add_argument('-N', '--nitems', type=float, - default=1e9, - help='Number of items per iterations [default: %(default)s]') - parser.add_argument('-I', '--iterations', type=int, - default=20, - help='Number of iterations [default: %(default)s]') - parser.add_argument('--tests', type=int, nargs='*', - choices=xrange(len(avail_tests)), - help='A list of tests to run; can be a single test or a \ - space-separated list.') - parser.add_argument('--list', action='store_true', - help='List the available tests') - parser.add_argument('--all', action='store_true', - help='Run all tests') - args = parser.parse_args() - - if(args.list): - print "Available Tests to Run:" - print "\n".join(["\t{0}: {1}".format(i,f.__name__) for i,f in enumerate(avail_tests)]) - sys.exit(0) - - N = int(args.nitems) - iters = args.iterations - label = args.label - - conn = create_connection(args.database) - new_table(conn, label) - - if not args.all: - func = avail_tests[args.test] - res = run_tests(func, N, iters) - if res is not None: - replace_results(conn, label, N, iters, res) - else: - for f in avail_tests: - res = run_tests(f, N, iters) - if res is not None: - replace_results(conn, label, N, iters, res) - -if __name__ == "__main__": - try: - main() - except KeyboardInterrupt: - pass diff --git a/gnuradio-examples/python/volk_benchmark/volk_plot.py b/gnuradio-examples/python/volk_benchmark/volk_plot.py deleted file mode 100755 index 823dfbf64..000000000 --- a/gnuradio-examples/python/volk_benchmark/volk_plot.py +++ /dev/null @@ -1,169 +0,0 @@ -#!/usr/bin/env python - -import sys, math -import argparse -from volk_test_funcs import * - -try: - import matplotlib - import matplotlib.pyplot as plt -except ImportError: - sys.stderr.write("Could not import Matplotlib (http://matplotlib.sourceforge.net/)\n") - sys.exit(1) - -def main(): - desc='Plot Volk performance results from a SQLite database. ' + \ - 'Run one of the volk tests first (e.g, volk_math.py)' - parser = argparse.ArgumentParser(description=desc) - parser.add_argument('-D', '--database', type=str, - default='volk_results.db', - help='Database file to read data from [default: %(default)s]') - parser.add_argument('-E', '--errorbars', - action='store_true', default=False, - help='Show error bars (1 standard dev.)') - parser.add_argument('-P', '--plot', type=str, - choices=['mean', 'min', 'max'], - default='mean', - help='Set the type of plot to produce [default: %(default)s]') - parser.add_argument('-%', '--percent', type=str, - default=None, metavar="table", - help='Show percent difference to the given type [default: %(default)s]') - args = parser.parse_args() - - # Set up global plotting properties - matplotlib.rcParams['figure.subplot.bottom'] = 0.2 - matplotlib.rcParams['figure.subplot.top'] = 0.95 - matplotlib.rcParams['figure.subplot.right'] = 0.98 - matplotlib.rcParams['ytick.labelsize'] = 16 - matplotlib.rcParams['xtick.labelsize'] = 16 - matplotlib.rcParams['legend.fontsize'] = 18 - - # Get list of tables to compare - conn = create_connection(args.database) - tables = list_tables(conn) - M = len(tables) - - # Colors to distinguish each table in the bar graph - # More than 5 tables will wrap around to the start. - colors = ['b', 'r', 'g', 'm', 'k'] - - # Set up figure for plotting - f0 = plt.figure(0, facecolor='w', figsize=(14,10)) - s0 = f0.add_subplot(1,1,1) - - # Create a register of names that exist in all tables - tmp_regs = [] - for table in tables: - # Get results from the next table - res = get_results(conn, table[0]) - - tmp_regs.append(list()) - for r in res: - try: - tmp_regs[-1].index(r['kernel']) - except ValueError: - tmp_regs[-1].append(r['kernel']) - - # Get only those names that are common in all tables - name_reg = tmp_regs[0] - for t in tmp_regs[1:]: - name_reg = list(set(name_reg) & set(t)) - name_reg.sort() - - # Pull the data out for each table into a dictionary - # we can ref the table by it's name and the data associated - # with a given kernel in name_reg by it's name. - # This ensures there is no sorting issue with the data in the - # dictionary, so the kernels are plotted against each other. - table_data = dict() - for i,table in enumerate(tables): - # Get results from the next table - res = get_results(conn, table[0]) - - data = dict() - for r in res: - data[r['kernel']] = r - - table_data[table[0]] = data - - if args.percent is not None: - for i,t in enumerate(table_data): - if args.percent == t: - norm_data = [] - for name in name_reg: - if(args.plot == 'max'): - norm_data.append(table_data[t][name]['max']) - elif(args.plot == 'min'): - norm_data.append(table_data[t][name]['min']) - elif(args.plot == 'mean'): - norm_data.append(table_data[t][name]['avg']) - - - # Plot the results - x0 = xrange(len(name_reg)) - i = 0 - for t in (table_data): - ydata = [] - stds = [] - for name in name_reg: - stds.append(math.sqrt(table_data[t][name]['var'])) - if(args.plot == 'max'): - ydata.append(table_data[t][name]['max']) - elif(args.plot == 'min'): - ydata.append(table_data[t][name]['min']) - elif(args.plot == 'mean'): - ydata.append(table_data[t][name]['avg']) - - if args.percent is not None: - ydata = [-100*(y-n)/y for y,n in zip(ydata,norm_data)] - if(args.percent != t): - # makes x values for this data set placement - # width of bars depends on number of comparisons - wdth = 0.80/(M-1) - x1 = [x + i*wdth for x in x0] - i += 1 - - s0.bar(x1, ydata, width=wdth, - color=colors[(i-1)%M], label=t, - edgecolor='k', linewidth=2) - - else: - # makes x values for this data set placement - # width of bars depends on number of comparisons - wdth = 0.80/M - x1 = [x + i*wdth for x in x0] - i += 1 - - if(args.errorbars is False): - s0.bar(x1, ydata, width=wdth, - color=colors[(i-1)%M], label=t, - edgecolor='k', linewidth=2) - else: - s0.bar(x1, ydata, width=wdth, - yerr=stds, - color=colors[i%M], label=t, - edgecolor='k', linewidth=2, - error_kw={"ecolor": 'k', "capsize":5, - "linewidth":2}) - - nitems = res[0]['nitems'] - if args.percent is None: - s0.set_ylabel("Processing time (sec) [{0:G} items]".format(nitems), - fontsize=22, fontweight='bold', - horizontalalignment='center') - else: - s0.set_ylabel("% Improvement over {0} [{1:G} items]".format( - args.percent, nitems), - fontsize=22, fontweight='bold') - - s0.legend() - s0.set_xticks(x0) - s0.set_xticklabels(name_reg) - for label in s0.xaxis.get_ticklabels(): - label.set_rotation(45) - label.set_fontsize(16) - - plt.show() - -if __name__ == "__main__": - main() diff --git a/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py b/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py deleted file mode 100644 index 4f4e4afd3..000000000 --- a/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py +++ /dev/null @@ -1,171 +0,0 @@ -#!/usr/bin/env python - -from gnuradio import gr -import math, sys, os, time - -try: - import scipy -except ImportError: - sys.stderr.write("Unable to import Scipy (www.scipy.org)\n") - sys.exit(1) - -try: - import sqlite3 -except ImportError: - sys.stderr.write("Unable to import sqlite3: requires Python 2.5\n") - sys.exit(1) - -def execute(conn, cmd): - ''' - Executes the command cmd to the database opened in connection conn. - ''' - c = conn.cursor() - c.execute(cmd) - conn.commit() - c.close() - -def create_connection(database): - ''' - Returns a connection object to the SQLite database. - ''' - return sqlite3.connect(database) - -def new_table(conn, tablename): - ''' - Create a new table for results. - All results are in the form: [kernel | nitems | iters | avg. time | variance | max time | min time ] - Each table is meant as a different setting (e.g., volk_aligned, volk_unaligned, etc.) - ''' - cols = "kernel text, nitems int, iters int, avg real, var real, max real, min real" - cmd = "create table if not exists {0} ({1})".format( - tablename, cols) - execute(conn, cmd) - -def replace_results(conn, tablename, nitems, iters, res): - ''' - Inserts or replaces the results 'res' dictionary values into the table. - This deletes all old entries of the kernel in this table. - ''' - cmd = "DELETE FROM {0} where kernel='{1}'".format(tablename, res["kernel"]) - execute(conn, cmd) - insert_results(conn, tablename, nitems, iters, res) - -def insert_results(conn, tablename, nitems, iters, res): - ''' - Inserts the results dictionary values into the table. - ''' - cols = "kernel, nitems, iters, avg, var, max, min" - cmd = "INSERT INTO {0} ({1}) VALUES ('{2}', {3}, {4}, {5}, {6}, {7}, {8})".format( - tablename, cols, res["kernel"], nitems, iters, - res["avg"], res["var"], res["max"], res["min"]) - execute(conn, cmd) - -def list_tables(conn): - ''' - Returns a list of all tables in the database. - ''' - cmd = "SELECT name FROM sqlite_master WHERE type='table' ORDER BY name" - c = conn.cursor() - c.execute(cmd) - t = c.fetchall() - c.close() - - return t - -def get_results(conn, tablename): - ''' - Gets all results in tablename. - ''' - cmd = "SELECT * FROM {0}".format(tablename) - c = conn.cursor() - c.execute(cmd) - fetched = c.fetchall() - c.close() - - res = list() - for f in fetched: - r = dict() - r['kernel'] = f[0] - r['nitems'] = f[1] - r['iters'] = f[2] - r['avg'] = f[3] - r['var'] = f[4] - r['min'] = f[5] - r['max'] = f[6] - res.append(r) - - return res - - -class helper(gr.top_block): - ''' - Helper function to run the tests. The parameters are: - N: number of items to process (int) - op: The GR block/hier_block to test - isizeof: the sizeof the input type - osizeof: the sizeof the output type - nsrcs: number of inputs to the op - nsnks: number of outputs of the op - - This function can only handle blocks where all inputs are the same - datatype and all outputs are the same data type - ''' - def __init__(self, N, op, - isizeof=gr.sizeof_gr_complex, - osizeof=gr.sizeof_gr_complex, - nsrcs=1, nsnks=1): - gr.top_block.__init__(self, "helper") - - self.op = op - self.srcs = [] - self.snks = [] - self.head = gr.head(isizeof, N) - - for n in xrange(nsrcs): - self.srcs.append(gr.null_source(isizeof)) - - for n in xrange(nsnks): - self.snks.append(gr.null_sink(osizeof)) - - self.connect(self.srcs[0], self.head, (self.op,0)) - - for n in xrange(1, nsrcs): - self.connect(self.srcs[n], (self.op,n)) - - for n in xrange(nsnks): - self.connect((self.op,n), self.snks[n]) - -def timeit(tb, iterations): - ''' - Given a top block, this function times it for a number of - iterations and stores the time in a list that is returned. - ''' - r = gr.enable_realtime_scheduling() - if r != gr.RT_OK: - print "Warning: failed to enable realtime scheduling" - - times = [] - for i in xrange(iterations): - start_time = time.time() - tb.run() - end_time = time.time() - tb.head.reset() - - times.append(end_time - start_time) - - return times - -def format_results(kernel, times): - ''' - Convinience function to convert the results of the timeit function - into a dictionary. - ''' - res = dict() - res["kernel"] = kernel - res["avg"] = scipy.mean(times) - res["var"] = scipy.var(times) - res["max"] = max(times) - res["min"] = min(times) - return res - - diff --git a/gnuradio-examples/python/volk_benchmark/volk_types.py b/gnuradio-examples/python/volk_benchmark/volk_types.py deleted file mode 100755 index 3bc5a22ae..000000000 --- a/gnuradio-examples/python/volk_benchmark/volk_types.py +++ /dev/null @@ -1,182 +0,0 @@ -#!/usr/bin/env python - -from gnuradio import gr -import argparse -from volk_test_funcs import * - -###################################################################### - -def float_to_char(N): - op = gr.float_to_char() - tb = helper(N, op, gr.sizeof_float, gr.sizeof_char, 1, 1) - return tb - -###################################################################### - -def float_to_int(N): - op = gr.float_to_int() - tb = helper(N, op, gr.sizeof_float, gr.sizeof_int, 1, 1) - return tb - -###################################################################### - -def float_to_short(N): - op = gr.float_to_short() - tb = helper(N, op, gr.sizeof_float, gr.sizeof_short, 1, 1) - return tb - -###################################################################### - -def short_to_float(N): - op = gr.short_to_float() - tb = helper(N, op, gr.sizeof_short, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - -def short_to_char(N): - op = gr.short_to_char() - tb = helper(N, op, gr.sizeof_short, gr.sizeof_char, 1, 1) - return tb - -###################################################################### - -def char_to_short(N): - op = gr.char_to_short() - tb = helper(N, op, gr.sizeof_char, gr.sizeof_short, 1, 1) - return tb - -###################################################################### - -def char_to_float(N): - op = gr.char_to_float() - tb = helper(N, op, gr.sizeof_char, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - -def int_to_float(N): - op = gr.int_to_float() - tb = helper(N, op, gr.sizeof_int, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - -def complex_to_float(N): - op = gr.complex_to_float() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 2) - return tb - -###################################################################### - -def complex_to_real(N): - op = gr.complex_to_real() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - -def complex_to_imag(N): - op = gr.complex_to_imag() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - -def complex_to_mag(N): - op = gr.complex_to_mag() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - -def complex_to_mag_squared(N): - op = gr.complex_to_mag_squared() - tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1) - return tb - -###################################################################### - - -def run_tests(func, N, iters): - print("Running Test: {0}".format(func.__name__)) - try: - tb = func(N) - t = timeit(tb, iters) - res = format_results(func.__name__, t) - return res - except AttributeError: - print "\tCould not run test. Skipping." - return None - -def main(): - avail_tests = [float_to_char, - float_to_int, - float_to_short, - short_to_float, - short_to_char, - char_to_short, - char_to_float, - int_to_float, - complex_to_float, - complex_to_real, - complex_to_imag, - complex_to_mag, - complex_to_mag_squared] - - desc='Time an operation to compare with other implementations. \ - This program runs a simple GNU Radio flowgraph to test a \ - particular math function, mostly to compare the \ - Volk-optimized implementation versus a regular \ - implementation. The results are stored to an SQLite database \ - that can then be read by volk_plot.py to plot the differences.' - parser = argparse.ArgumentParser(description=desc) - parser.add_argument('-L', '--label', type=str, - required=True, default=None, - help='Label of database table [default: %(default)s]') - parser.add_argument('-D', '--database', type=str, - default="volk_results.db", - help='Database file to store data in [default: %(default)s]') - parser.add_argument('-N', '--nitems', type=float, - default=1e9, - help='Number of items per iterations [default: %(default)s]') - parser.add_argument('-I', '--iterations', type=int, - default=20, - help='Number of iterations [default: %(default)s]') - parser.add_argument('--tests', type=int, nargs='*', - choices=xrange(len(avail_tests)), - help='A list of tests to run; can be a single test or a \ - space-separated list.') - parser.add_argument('--list', action='store_true', - help='List the available tests') - parser.add_argument('--all', action='store_true', - help='Run all tests') - args = parser.parse_args() - - if(args.list): - print "Available Tests to Run:" - print "\n".join(["\t{0}: {1}".format(i,f.__name__) for i,f in enumerate(avail_tests)]) - sys.exit(0) - - N = int(args.nitems) - iters = args.iterations - label = args.label - - conn = create_connection(args.database) - new_table(conn, label) - - if args.all: - tests = xrange(len(avail_tests)) - else: - tests = args.tests - - for test in tests: - res = run_tests(avail_tests[test], N, iters) - if res is not None: - replace_results(conn, label, N, iters, res) - -if __name__ == "__main__": - try: - main() - except KeyboardInterrupt: - pass |