summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/volk_benchmark
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/volk_benchmark')
-rw-r--r--gnuradio-examples/python/volk_benchmark/README252
-rwxr-xr-xgnuradio-examples/python/volk_benchmark/volk_math.py152
-rwxr-xr-xgnuradio-examples/python/volk_benchmark/volk_plot.py169
-rw-r--r--gnuradio-examples/python/volk_benchmark/volk_test_funcs.py171
-rwxr-xr-xgnuradio-examples/python/volk_benchmark/volk_types.py182
5 files changed, 926 insertions, 0 deletions
diff --git a/gnuradio-examples/python/volk_benchmark/README b/gnuradio-examples/python/volk_benchmark/README
new file mode 100644
index 000000000..516fc15bd
--- /dev/null
+++ b/gnuradio-examples/python/volk_benchmark/README
@@ -0,0 +1,252 @@
+VOLK Benchmarking Scripts
+
+The Python programs in this directory are designed to help benchmark
+and compare Volk enhancements to GNU Radio. There are two kinds of
+scripts here: collecting data and displaying the data.
+
+Data collection is done by running a Volk testing script that will
+populate a SQLite database file (volk_results.db by default). The
+plotting utility provided here reads from the database files and plots
+bar graphs to compare the different installations.
+
+These benchmarks can be used to compare previous versions of GNU
+Radio to using Volk; they can be used to compare different Volk
+proto-kernels, as well, by editing the volk_config file; or they could
+be used to compare performance between different machines and/or
+processors.
+
+
+======================================================================
+Volk Profiling
+
+Before doing any kind of Volk benchmarking, it is important to run the
+volk_profile program. The profiler will build a config file for the
+best SIMD architecture for your processor. Run volk_profile that is
+installed into $PREFIX/bin. This program tests all known Volk kernels
+for each proto-kernel supported by the processor. When finished, it
+will write to $HOME/.volk/volk_config the best architecture for the
+VOLK function. This file is read when using a function to know the
+best version of the function to execute.
+
+The volk_config file contains a line for each kernel, where each line
+looks like:
+
+ volk_<KERNEL_NAME> <ARCHITECTURE>
+
+The architecture will be something like (sse, sse2, sse3, avx, neon,
+etc.), depending on your processor.
+
+
+======================================================================
+Benchmark Tests
+
+There are currently two benchmark scripts defined for collecting
+data. There is one that runs through the type conversions that have
+been converted to Volk (volk_types.py) and the other runs through the
+math operators converted to using Volk (volk_math.py).
+
+Script prototypes
+Both have the same structure for use:
+
+----------------------------------------------------------------------
+./volk_<test>.py [-h] -L LABEL [-D DATABASE] [-N NITEMS] [-I ITERATIONS]
+ [--tests [{0,1,2,3} [{0,1,2,3} ...]]] [--list]
+ [--all]
+
+optional arguments:
+ -h, --help show this help message and exit
+ -L LABEL, --label LABEL
+ Label of database table [default: None]
+ -D DATABASE, --database DATABASE
+ Database file to store data in [default:
+ volk_results.db]
+ -N NITEMS, --nitems NITEMS
+ Number of items per iterations [default: 1000000000.0]
+ -I ITERATIONS, --iterations ITERATIONS
+ Number of iterations [default: 20]
+ --tests [{0,1,2,3} [{0,1,2,3} ...]]
+ A list of tests to run; can be a single test or a
+ space-separated list.
+ --list List the available tests
+ --all Run all tests
+----------------------------------------------------------------------
+
+To run, you specify the tests to run and a label to store along with
+the results. To find out what the available tests are, use the
+'--list' option.
+
+To specify a subset of tests, use the '--tests' with space-separated
+list of tests numbers (e.g., --tests 0 2 4 9).
+
+Use the '--all' to run all tests.
+
+The label specified is used as an identifier for the benchmarking
+currently being done. This is required as it is important in
+organizing the data in the database (each label is its own
+table). Usually, the label will specify the type of run being done,
+such as "volk_aligned" or "v3_5_1". In these cases, the "volk_aligned"
+label says that this is for a benchmarking using the GNU Radio version
+that uses the aligned scheduler and Volk calls in the work
+functions. The "v3_5_1" label is if you were benchmarking an installed
+version 3.5.1 of GNU Radio, which is pre-Volk. These will then be
+plotted against each other to see the timing differences.
+
+The 'database' option will output the results to a new database
+file. This can be useful for separating the output of different runs
+or of different benchmarks, such as the types versus the math scripts,
+say, or to distinguish results from different computers.
+
+If rerun using the same database and label, the entries in the table
+will simply be replaced by the new results.
+
+It is often useful to use the 'sqlitebrowser' program to interrogate
+the database file farther, if you are interested in the structure or
+the raw data.
+
+Other parameters of this script set the number of items to process and
+number of iterations to use when computing the benchmarking
+data. These default to 1 billion samples per iteration over 20
+iterations. Expect a default run to take a long time. Using the '-N'
+and '-I' options can be used to change the runtime of the benchmarks
+but are set high to remove problems of variance between iterations.
+
+======================================================================
+Plotting Results
+
+The volk_plot.py script reads a given database file and plots the
+results. The default behavior is to read all of the labels stored in
+the database and plot them as data sets on a bar graph. This shows the
+average time taken to process the number of items given.
+
+The options for the plotting script are:
+
+usage: volk_plot.py [-h] [-D DATABASE] [-E] [-P {mean,min,max}] [-% table]
+
+Plot Volk performance results from a SQLite database. Run one of the volk
+tests first (e.g, volk_math.py)
+
+----------------------------------------------------------------------
+optional arguments:
+ -h, --help show this help message and exit
+ -D DATABASE, --database DATABASE
+ Database file to read data from [default:
+ volk_results.db]
+ -E, --errorbars Show error bars (1 standard dev.)
+ -P {mean,min,max}, --plot {mean,min,max}
+ Set the type of plot to produce [default: mean]
+ -% table, --percent table
+ Show percent difference to the given type [default:
+ None]
+----------------------------------------------------------------------
+
+This script allows you to specify the database used (-D), but will
+always read all rows from all tables from it and display them. You can
+also turn on plotting error bars (1 standard deviation the mean). Be
+careful, though, as some older versions of Matplotlib might have an
+issue with this option.
+
+The mean time is only one possible statistic that we might be
+interested in when looking at the data. It represents the average user
+experience when running a given block. On the other hand, the minimum
+runtime best represents the actual performance of a block given
+minimal OS interruptions while running. Right now, the data collected
+includes the mean, variance, min, and max over the number of
+iterations given. Using the '-P' option, you can specify the type of
+data to plot (mean, min, or max).
+
+Another useful way of looking at the data is to compare the percent
+improvement of a benchmark compared to another. This is done using the
+'-%' option with the provided table (or label) as the baseline. So if
+we were interested in comparing how much the 'volk_aligned' was over
+'v3_5_1', we would specify '-% v3_5_1' to see this. The plot would
+then only show the percent speedup observed using Volk for each of the
+blocks.
+
+
+======================================================================
+Benchmarking Walkthrough
+
+This will walk through an example of benchmarking the new Volk
+implementation versus the pre-Volk GNU Radio. It also shows how to
+look at the SIMD optimized versions versus the generic
+implementations.
+
+Since we introduced Volk in GNU Radio 3.5.2, we will use the following
+labels for our data:
+
+ 1.) volk_aligned: v3.5.2 with volk_profile results in .volk/volk_config
+ 2.) v3_5_2: v3.5.2 with the generic (non-SIMD) calls to Volk
+ 3.) v3_5_1: an installation of GNU Radio from version v3.5.1
+
+We assume that we have installed two versions of GNU Radio.
+
+ v3.5.2 installed into /opt/gr-3_5_2
+ v3.5.1 installed into /opt/gr-3_5_1
+
+To test cases 1 and 2 above, we have to run GNU Radio from the v3.5.2
+installation, so we set the following environmental variables. Note
+that this is written for Ubuntu 11.10. These commands and directories
+may have to be changed depending on your OS and versions.
+
+ export LD_LIBRARY_PATH=/opt/gr-3_5_2/lib
+ export LD_LIBRARY_PATH=/opt/gr-3_5_2/lib/python2.7/dist-packages
+
+Now we can run the benchmark tests, so we will focus on the math
+operators:
+
+ ./volk_math.py -D volk_results_math.db --all -L volk_aligned
+
+When this finishes, the 'volk_results_math.db' will contain our
+results for this run.
+
+We next want to run the generic, non-SIMD, calls. This can be done by
+changing the Volk kernel settings in $HOME/.volk/volk_config. First,
+make a backup of this file. Then edit it and change all architecture
+calls (sse, sse2, etc.) to 'generic.' Now, Volk will only call the
+generic versions of these functions. So we rerun the benchmark with:
+
+ ./volk_math.py -D volk_results_math.db --all -L v3_5_2
+
+Notice that the only thing changed here was the label to 'v3_5_2'.
+
+Next, we want to collect data for the non-Volk version of GNU
+Radio. This is important because some internals to GNU Radio were made
+when adding support for Volk, so it is nice to know what the
+differences do to our performance. First, we set the environmental
+variables to point to the v3.5.1 installation:
+
+ export LD_LIBRARY_PATH=/opt/gr-3_5_1/lib
+ export LD_LIBRARY_PATH=/opt/gr-3_5_1/lib/python2.7/dist-packages
+
+And when we run the test, we use the same command line, but the GNU
+Radio libraries and Python files used come from v3.5.1. We also change
+the label to indicate the different version to store.
+
+ ./volk_math.py -D volk_results_math.db --all -L v3_5_1
+
+We now have a database populated with three tables for the three
+different labels. We can plot them all together by simply running:
+
+ ./volk_plot.py -D volk_results_math.db
+
+This will show the average run times for each of the three
+configurations for all math functions tested. We might also be
+interested to see the difference in performance from the v3.5.1
+version, so we can run:
+
+ ./volk_plot.py -D volk_results_math.db -% v3_5_1
+
+That will plot both the 'volk_aligned' and 'v3_5_2' as a percentage
+improvement over v3_5_1. A positive value indicates that this version
+runs faster than the v3.5.1 version.
+
+
+----------------------------------------------------------------------
+
+Another interesting test case could be to compare results on different
+processors. So if you have different generation Intels, AMD, or
+whatever, you can simply pass the .db file around and run the Volk
+benchmark script to populate the database with different results. For
+this, you would specify a label like '-L i7_2620M' that indicates the
+processor type to uniquely ID the data.
+
diff --git a/gnuradio-examples/python/volk_benchmark/volk_math.py b/gnuradio-examples/python/volk_benchmark/volk_math.py
new file mode 100755
index 000000000..8b0081387
--- /dev/null
+++ b/gnuradio-examples/python/volk_benchmark/volk_math.py
@@ -0,0 +1,152 @@
+#!/usr/bin/env python
+
+from gnuradio import gr
+import argparse
+from volk_test_funcs import *
+
+def multiply_const_cc(N):
+ k = 3.3
+ op = gr.multiply_const_cc(k)
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 1, 1)
+ return tb
+
+######################################################################
+
+def multiply_const_ff(N):
+ k = 3.3
+ op = gr.multiply_const_ff(k)
+ tb = helper(N, op, gr.sizeof_float, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+def multiply_cc(N):
+ op = gr.multiply_cc()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 2, 1)
+ return tb
+
+######################################################################
+
+def multiply_ff(N):
+ op = gr.multiply_ff()
+ tb = helper(N, op, gr.sizeof_float, gr.sizeof_float, 2, 1)
+ return tb
+
+######################################################################
+
+def add_ff(N):
+ op = gr.add_ff()
+ tb = helper(N, op, gr.sizeof_float, gr.sizeof_float, 2, 1)
+ return tb
+
+######################################################################
+
+def conjugate_cc(N):
+ op = gr.conjugate_cc()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 1, 1)
+ return tb
+
+######################################################################
+
+def multiply_conjugate_cc(N):
+ try:
+ op = gr.multiply_conjugate_cc()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 2, 1)
+ return tb
+
+ except AttributeError:
+ class s(gr.hier_block2):
+ def __init__(self):
+ gr.hier_block2.__init__(self, "s",
+ gr.io_signature(2, 2, gr.sizeof_gr_complex),
+ gr.io_signature(1, 1, gr.sizeof_gr_complex))
+ conj = gr.conjugate_cc()
+ mult = gr.multiply_cc()
+ self.connect((self,0), (mult,0))
+ self.connect((self,1), conj, (mult,1))
+ self.connect(mult, self)
+
+ op = s()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_gr_complex, 2, 1)
+ return tb
+
+
+######################################################################
+
+def run_tests(func, N, iters):
+ print("Running Test: {0}".format(func.__name__))
+ try:
+ tb = func(N)
+ t = timeit(tb, iters)
+ res = format_results(func.__name__, t)
+ return res
+ except AttributeError:
+ print "\tCould not run test. Skipping."
+ return None
+
+def main():
+ avail_tests = [multiply_const_cc,
+ multiply_const_ff,
+ multiply_cc,
+ multiply_ff,
+ add_ff,
+ conjugate_cc,
+ multiply_conjugate_cc]
+
+ desc='Time an operation to compare with other implementations. \
+ This program runs a simple GNU Radio flowgraph to test a \
+ particular math function, mostly to compare the \
+ Volk-optimized implementation versus a regular \
+ implementation. The results are stored to an SQLite database \
+ that can then be read by volk_plot.py to plot the differences.'
+ parser = argparse.ArgumentParser(description=desc)
+ parser.add_argument('-L', '--label', type=str,
+ required=True, default=None,
+ help='Label of database table [default: %(default)s]')
+ parser.add_argument('-D', '--database', type=str,
+ default="volk_results.db",
+ help='Database file to store data in [default: %(default)s]')
+ parser.add_argument('-N', '--nitems', type=float,
+ default=1e9,
+ help='Number of items per iterations [default: %(default)s]')
+ parser.add_argument('-I', '--iterations', type=int,
+ default=20,
+ help='Number of iterations [default: %(default)s]')
+ parser.add_argument('--tests', type=int, nargs='*',
+ choices=xrange(len(avail_tests)),
+ help='A list of tests to run; can be a single test or a \
+ space-separated list.')
+ parser.add_argument('--list', action='store_true',
+ help='List the available tests')
+ parser.add_argument('--all', action='store_true',
+ help='Run all tests')
+ args = parser.parse_args()
+
+ if(args.list):
+ print "Available Tests to Run:"
+ print "\n".join(["\t{0}: {1}".format(i,f.__name__) for i,f in enumerate(avail_tests)])
+ sys.exit(0)
+
+ N = int(args.nitems)
+ iters = args.iterations
+ label = args.label
+
+ conn = create_connection(args.database)
+ new_table(conn, label)
+
+ if not args.all:
+ func = avail_tests[args.test]
+ res = run_tests(func, N, iters)
+ if res is not None:
+ replace_results(conn, label, N, iters, res)
+ else:
+ for f in avail_tests:
+ res = run_tests(f, N, iters)
+ if res is not None:
+ replace_results(conn, label, N, iters, res)
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
diff --git a/gnuradio-examples/python/volk_benchmark/volk_plot.py b/gnuradio-examples/python/volk_benchmark/volk_plot.py
new file mode 100755
index 000000000..823dfbf64
--- /dev/null
+++ b/gnuradio-examples/python/volk_benchmark/volk_plot.py
@@ -0,0 +1,169 @@
+#!/usr/bin/env python
+
+import sys, math
+import argparse
+from volk_test_funcs import *
+
+try:
+ import matplotlib
+ import matplotlib.pyplot as plt
+except ImportError:
+ sys.stderr.write("Could not import Matplotlib (http://matplotlib.sourceforge.net/)\n")
+ sys.exit(1)
+
+def main():
+ desc='Plot Volk performance results from a SQLite database. ' + \
+ 'Run one of the volk tests first (e.g, volk_math.py)'
+ parser = argparse.ArgumentParser(description=desc)
+ parser.add_argument('-D', '--database', type=str,
+ default='volk_results.db',
+ help='Database file to read data from [default: %(default)s]')
+ parser.add_argument('-E', '--errorbars',
+ action='store_true', default=False,
+ help='Show error bars (1 standard dev.)')
+ parser.add_argument('-P', '--plot', type=str,
+ choices=['mean', 'min', 'max'],
+ default='mean',
+ help='Set the type of plot to produce [default: %(default)s]')
+ parser.add_argument('-%', '--percent', type=str,
+ default=None, metavar="table",
+ help='Show percent difference to the given type [default: %(default)s]')
+ args = parser.parse_args()
+
+ # Set up global plotting properties
+ matplotlib.rcParams['figure.subplot.bottom'] = 0.2
+ matplotlib.rcParams['figure.subplot.top'] = 0.95
+ matplotlib.rcParams['figure.subplot.right'] = 0.98
+ matplotlib.rcParams['ytick.labelsize'] = 16
+ matplotlib.rcParams['xtick.labelsize'] = 16
+ matplotlib.rcParams['legend.fontsize'] = 18
+
+ # Get list of tables to compare
+ conn = create_connection(args.database)
+ tables = list_tables(conn)
+ M = len(tables)
+
+ # Colors to distinguish each table in the bar graph
+ # More than 5 tables will wrap around to the start.
+ colors = ['b', 'r', 'g', 'm', 'k']
+
+ # Set up figure for plotting
+ f0 = plt.figure(0, facecolor='w', figsize=(14,10))
+ s0 = f0.add_subplot(1,1,1)
+
+ # Create a register of names that exist in all tables
+ tmp_regs = []
+ for table in tables:
+ # Get results from the next table
+ res = get_results(conn, table[0])
+
+ tmp_regs.append(list())
+ for r in res:
+ try:
+ tmp_regs[-1].index(r['kernel'])
+ except ValueError:
+ tmp_regs[-1].append(r['kernel'])
+
+ # Get only those names that are common in all tables
+ name_reg = tmp_regs[0]
+ for t in tmp_regs[1:]:
+ name_reg = list(set(name_reg) & set(t))
+ name_reg.sort()
+
+ # Pull the data out for each table into a dictionary
+ # we can ref the table by it's name and the data associated
+ # with a given kernel in name_reg by it's name.
+ # This ensures there is no sorting issue with the data in the
+ # dictionary, so the kernels are plotted against each other.
+ table_data = dict()
+ for i,table in enumerate(tables):
+ # Get results from the next table
+ res = get_results(conn, table[0])
+
+ data = dict()
+ for r in res:
+ data[r['kernel']] = r
+
+ table_data[table[0]] = data
+
+ if args.percent is not None:
+ for i,t in enumerate(table_data):
+ if args.percent == t:
+ norm_data = []
+ for name in name_reg:
+ if(args.plot == 'max'):
+ norm_data.append(table_data[t][name]['max'])
+ elif(args.plot == 'min'):
+ norm_data.append(table_data[t][name]['min'])
+ elif(args.plot == 'mean'):
+ norm_data.append(table_data[t][name]['avg'])
+
+
+ # Plot the results
+ x0 = xrange(len(name_reg))
+ i = 0
+ for t in (table_data):
+ ydata = []
+ stds = []
+ for name in name_reg:
+ stds.append(math.sqrt(table_data[t][name]['var']))
+ if(args.plot == 'max'):
+ ydata.append(table_data[t][name]['max'])
+ elif(args.plot == 'min'):
+ ydata.append(table_data[t][name]['min'])
+ elif(args.plot == 'mean'):
+ ydata.append(table_data[t][name]['avg'])
+
+ if args.percent is not None:
+ ydata = [-100*(y-n)/y for y,n in zip(ydata,norm_data)]
+ if(args.percent != t):
+ # makes x values for this data set placement
+ # width of bars depends on number of comparisons
+ wdth = 0.80/(M-1)
+ x1 = [x + i*wdth for x in x0]
+ i += 1
+
+ s0.bar(x1, ydata, width=wdth,
+ color=colors[(i-1)%M], label=t,
+ edgecolor='k', linewidth=2)
+
+ else:
+ # makes x values for this data set placement
+ # width of bars depends on number of comparisons
+ wdth = 0.80/M
+ x1 = [x + i*wdth for x in x0]
+ i += 1
+
+ if(args.errorbars is False):
+ s0.bar(x1, ydata, width=wdth,
+ color=colors[(i-1)%M], label=t,
+ edgecolor='k', linewidth=2)
+ else:
+ s0.bar(x1, ydata, width=wdth,
+ yerr=stds,
+ color=colors[i%M], label=t,
+ edgecolor='k', linewidth=2,
+ error_kw={"ecolor": 'k', "capsize":5,
+ "linewidth":2})
+
+ nitems = res[0]['nitems']
+ if args.percent is None:
+ s0.set_ylabel("Processing time (sec) [{0:G} items]".format(nitems),
+ fontsize=22, fontweight='bold',
+ horizontalalignment='center')
+ else:
+ s0.set_ylabel("% Improvement over {0} [{1:G} items]".format(
+ args.percent, nitems),
+ fontsize=22, fontweight='bold')
+
+ s0.legend()
+ s0.set_xticks(x0)
+ s0.set_xticklabels(name_reg)
+ for label in s0.xaxis.get_ticklabels():
+ label.set_rotation(45)
+ label.set_fontsize(16)
+
+ plt.show()
+
+if __name__ == "__main__":
+ main()
diff --git a/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py b/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py
new file mode 100644
index 000000000..4f4e4afd3
--- /dev/null
+++ b/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py
@@ -0,0 +1,171 @@
+#!/usr/bin/env python
+
+from gnuradio import gr
+import math, sys, os, time
+
+try:
+ import scipy
+except ImportError:
+ sys.stderr.write("Unable to import Scipy (www.scipy.org)\n")
+ sys.exit(1)
+
+try:
+ import sqlite3
+except ImportError:
+ sys.stderr.write("Unable to import sqlite3: requires Python 2.5\n")
+ sys.exit(1)
+
+def execute(conn, cmd):
+ '''
+ Executes the command cmd to the database opened in connection conn.
+ '''
+ c = conn.cursor()
+ c.execute(cmd)
+ conn.commit()
+ c.close()
+
+def create_connection(database):
+ '''
+ Returns a connection object to the SQLite database.
+ '''
+ return sqlite3.connect(database)
+
+def new_table(conn, tablename):
+ '''
+ Create a new table for results.
+ All results are in the form: [kernel | nitems | iters | avg. time | variance | max time | min time ]
+ Each table is meant as a different setting (e.g., volk_aligned, volk_unaligned, etc.)
+ '''
+ cols = "kernel text, nitems int, iters int, avg real, var real, max real, min real"
+ cmd = "create table if not exists {0} ({1})".format(
+ tablename, cols)
+ execute(conn, cmd)
+
+def replace_results(conn, tablename, nitems, iters, res):
+ '''
+ Inserts or replaces the results 'res' dictionary values into the table.
+ This deletes all old entries of the kernel in this table.
+ '''
+ cmd = "DELETE FROM {0} where kernel='{1}'".format(tablename, res["kernel"])
+ execute(conn, cmd)
+ insert_results(conn, tablename, nitems, iters, res)
+
+def insert_results(conn, tablename, nitems, iters, res):
+ '''
+ Inserts the results dictionary values into the table.
+ '''
+ cols = "kernel, nitems, iters, avg, var, max, min"
+ cmd = "INSERT INTO {0} ({1}) VALUES ('{2}', {3}, {4}, {5}, {6}, {7}, {8})".format(
+ tablename, cols, res["kernel"], nitems, iters,
+ res["avg"], res["var"], res["max"], res["min"])
+ execute(conn, cmd)
+
+def list_tables(conn):
+ '''
+ Returns a list of all tables in the database.
+ '''
+ cmd = "SELECT name FROM sqlite_master WHERE type='table' ORDER BY name"
+ c = conn.cursor()
+ c.execute(cmd)
+ t = c.fetchall()
+ c.close()
+
+ return t
+
+def get_results(conn, tablename):
+ '''
+ Gets all results in tablename.
+ '''
+ cmd = "SELECT * FROM {0}".format(tablename)
+ c = conn.cursor()
+ c.execute(cmd)
+ fetched = c.fetchall()
+ c.close()
+
+ res = list()
+ for f in fetched:
+ r = dict()
+ r['kernel'] = f[0]
+ r['nitems'] = f[1]
+ r['iters'] = f[2]
+ r['avg'] = f[3]
+ r['var'] = f[4]
+ r['min'] = f[5]
+ r['max'] = f[6]
+ res.append(r)
+
+ return res
+
+
+class helper(gr.top_block):
+ '''
+ Helper function to run the tests. The parameters are:
+ N: number of items to process (int)
+ op: The GR block/hier_block to test
+ isizeof: the sizeof the input type
+ osizeof: the sizeof the output type
+ nsrcs: number of inputs to the op
+ nsnks: number of outputs of the op
+
+ This function can only handle blocks where all inputs are the same
+ datatype and all outputs are the same data type
+ '''
+ def __init__(self, N, op,
+ isizeof=gr.sizeof_gr_complex,
+ osizeof=gr.sizeof_gr_complex,
+ nsrcs=1, nsnks=1):
+ gr.top_block.__init__(self, "helper")
+
+ self.op = op
+ self.srcs = []
+ self.snks = []
+ self.head = gr.head(isizeof, N)
+
+ for n in xrange(nsrcs):
+ self.srcs.append(gr.null_source(isizeof))
+
+ for n in xrange(nsnks):
+ self.snks.append(gr.null_sink(osizeof))
+
+ self.connect(self.srcs[0], self.head, (self.op,0))
+
+ for n in xrange(1, nsrcs):
+ self.connect(self.srcs[n], (self.op,n))
+
+ for n in xrange(nsnks):
+ self.connect((self.op,n), self.snks[n])
+
+def timeit(tb, iterations):
+ '''
+ Given a top block, this function times it for a number of
+ iterations and stores the time in a list that is returned.
+ '''
+ r = gr.enable_realtime_scheduling()
+ if r != gr.RT_OK:
+ print "Warning: failed to enable realtime scheduling"
+
+ times = []
+ for i in xrange(iterations):
+ start_time = time.time()
+ tb.run()
+ end_time = time.time()
+ tb.head.reset()
+
+ times.append(end_time - start_time)
+
+ return times
+
+def format_results(kernel, times):
+ '''
+ Convinience function to convert the results of the timeit function
+ into a dictionary.
+ '''
+ res = dict()
+ res["kernel"] = kernel
+ res["avg"] = scipy.mean(times)
+ res["var"] = scipy.var(times)
+ res["max"] = max(times)
+ res["min"] = min(times)
+ return res
+
+
diff --git a/gnuradio-examples/python/volk_benchmark/volk_types.py b/gnuradio-examples/python/volk_benchmark/volk_types.py
new file mode 100755
index 000000000..3bc5a22ae
--- /dev/null
+++ b/gnuradio-examples/python/volk_benchmark/volk_types.py
@@ -0,0 +1,182 @@
+#!/usr/bin/env python
+
+from gnuradio import gr
+import argparse
+from volk_test_funcs import *
+
+######################################################################
+
+def float_to_char(N):
+ op = gr.float_to_char()
+ tb = helper(N, op, gr.sizeof_float, gr.sizeof_char, 1, 1)
+ return tb
+
+######################################################################
+
+def float_to_int(N):
+ op = gr.float_to_int()
+ tb = helper(N, op, gr.sizeof_float, gr.sizeof_int, 1, 1)
+ return tb
+
+######################################################################
+
+def float_to_short(N):
+ op = gr.float_to_short()
+ tb = helper(N, op, gr.sizeof_float, gr.sizeof_short, 1, 1)
+ return tb
+
+######################################################################
+
+def short_to_float(N):
+ op = gr.short_to_float()
+ tb = helper(N, op, gr.sizeof_short, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+def short_to_char(N):
+ op = gr.short_to_char()
+ tb = helper(N, op, gr.sizeof_short, gr.sizeof_char, 1, 1)
+ return tb
+
+######################################################################
+
+def char_to_short(N):
+ op = gr.char_to_short()
+ tb = helper(N, op, gr.sizeof_char, gr.sizeof_short, 1, 1)
+ return tb
+
+######################################################################
+
+def char_to_float(N):
+ op = gr.char_to_float()
+ tb = helper(N, op, gr.sizeof_char, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+def int_to_float(N):
+ op = gr.int_to_float()
+ tb = helper(N, op, gr.sizeof_int, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+def complex_to_float(N):
+ op = gr.complex_to_float()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 2)
+ return tb
+
+######################################################################
+
+def complex_to_real(N):
+ op = gr.complex_to_real()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+def complex_to_imag(N):
+ op = gr.complex_to_imag()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+def complex_to_mag(N):
+ op = gr.complex_to_mag()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+def complex_to_mag_squared(N):
+ op = gr.complex_to_mag_squared()
+ tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1)
+ return tb
+
+######################################################################
+
+
+def run_tests(func, N, iters):
+ print("Running Test: {0}".format(func.__name__))
+ try:
+ tb = func(N)
+ t = timeit(tb, iters)
+ res = format_results(func.__name__, t)
+ return res
+ except AttributeError:
+ print "\tCould not run test. Skipping."
+ return None
+
+def main():
+ avail_tests = [float_to_char,
+ float_to_int,
+ float_to_short,
+ short_to_float,
+ short_to_char,
+ char_to_short,
+ char_to_float,
+ int_to_float,
+ complex_to_float,
+ complex_to_real,
+ complex_to_imag,
+ complex_to_mag,
+ complex_to_mag_squared]
+
+ desc='Time an operation to compare with other implementations. \
+ This program runs a simple GNU Radio flowgraph to test a \
+ particular math function, mostly to compare the \
+ Volk-optimized implementation versus a regular \
+ implementation. The results are stored to an SQLite database \
+ that can then be read by volk_plot.py to plot the differences.'
+ parser = argparse.ArgumentParser(description=desc)
+ parser.add_argument('-L', '--label', type=str,
+ required=True, default=None,
+ help='Label of database table [default: %(default)s]')
+ parser.add_argument('-D', '--database', type=str,
+ default="volk_results.db",
+ help='Database file to store data in [default: %(default)s]')
+ parser.add_argument('-N', '--nitems', type=float,
+ default=1e9,
+ help='Number of items per iterations [default: %(default)s]')
+ parser.add_argument('-I', '--iterations', type=int,
+ default=20,
+ help='Number of iterations [default: %(default)s]')
+ parser.add_argument('--tests', type=int, nargs='*',
+ choices=xrange(len(avail_tests)),
+ help='A list of tests to run; can be a single test or a \
+ space-separated list.')
+ parser.add_argument('--list', action='store_true',
+ help='List the available tests')
+ parser.add_argument('--all', action='store_true',
+ help='Run all tests')
+ args = parser.parse_args()
+
+ if(args.list):
+ print "Available Tests to Run:"
+ print "\n".join(["\t{0}: {1}".format(i,f.__name__) for i,f in enumerate(avail_tests)])
+ sys.exit(0)
+
+ N = int(args.nitems)
+ iters = args.iterations
+ label = args.label
+
+ conn = create_connection(args.database)
+ new_table(conn, label)
+
+ if args.all:
+ tests = xrange(len(avail_tests))
+ else:
+ tests = args.tests
+
+ for test in tests:
+ res = run_tests(avail_tests[test], N, iters)
+ if res is not None:
+ replace_results(conn, label, N, iters, res)
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass