summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/volk_benchmark/volk_plot.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/volk_benchmark/volk_plot.py')
-rwxr-xr-xgnuradio-examples/python/volk_benchmark/volk_plot.py169
1 files changed, 169 insertions, 0 deletions
diff --git a/gnuradio-examples/python/volk_benchmark/volk_plot.py b/gnuradio-examples/python/volk_benchmark/volk_plot.py
new file mode 100755
index 000000000..823dfbf64
--- /dev/null
+++ b/gnuradio-examples/python/volk_benchmark/volk_plot.py
@@ -0,0 +1,169 @@
+#!/usr/bin/env python
+
+import sys, math
+import argparse
+from volk_test_funcs import *
+
+try:
+ import matplotlib
+ import matplotlib.pyplot as plt
+except ImportError:
+ sys.stderr.write("Could not import Matplotlib (http://matplotlib.sourceforge.net/)\n")
+ sys.exit(1)
+
+def main():
+ desc='Plot Volk performance results from a SQLite database. ' + \
+ 'Run one of the volk tests first (e.g, volk_math.py)'
+ parser = argparse.ArgumentParser(description=desc)
+ parser.add_argument('-D', '--database', type=str,
+ default='volk_results.db',
+ help='Database file to read data from [default: %(default)s]')
+ parser.add_argument('-E', '--errorbars',
+ action='store_true', default=False,
+ help='Show error bars (1 standard dev.)')
+ parser.add_argument('-P', '--plot', type=str,
+ choices=['mean', 'min', 'max'],
+ default='mean',
+ help='Set the type of plot to produce [default: %(default)s]')
+ parser.add_argument('-%', '--percent', type=str,
+ default=None, metavar="table",
+ help='Show percent difference to the given type [default: %(default)s]')
+ args = parser.parse_args()
+
+ # Set up global plotting properties
+ matplotlib.rcParams['figure.subplot.bottom'] = 0.2
+ matplotlib.rcParams['figure.subplot.top'] = 0.95
+ matplotlib.rcParams['figure.subplot.right'] = 0.98
+ matplotlib.rcParams['ytick.labelsize'] = 16
+ matplotlib.rcParams['xtick.labelsize'] = 16
+ matplotlib.rcParams['legend.fontsize'] = 18
+
+ # Get list of tables to compare
+ conn = create_connection(args.database)
+ tables = list_tables(conn)
+ M = len(tables)
+
+ # Colors to distinguish each table in the bar graph
+ # More than 5 tables will wrap around to the start.
+ colors = ['b', 'r', 'g', 'm', 'k']
+
+ # Set up figure for plotting
+ f0 = plt.figure(0, facecolor='w', figsize=(14,10))
+ s0 = f0.add_subplot(1,1,1)
+
+ # Create a register of names that exist in all tables
+ tmp_regs = []
+ for table in tables:
+ # Get results from the next table
+ res = get_results(conn, table[0])
+
+ tmp_regs.append(list())
+ for r in res:
+ try:
+ tmp_regs[-1].index(r['kernel'])
+ except ValueError:
+ tmp_regs[-1].append(r['kernel'])
+
+ # Get only those names that are common in all tables
+ name_reg = tmp_regs[0]
+ for t in tmp_regs[1:]:
+ name_reg = list(set(name_reg) & set(t))
+ name_reg.sort()
+
+ # Pull the data out for each table into a dictionary
+ # we can ref the table by it's name and the data associated
+ # with a given kernel in name_reg by it's name.
+ # This ensures there is no sorting issue with the data in the
+ # dictionary, so the kernels are plotted against each other.
+ table_data = dict()
+ for i,table in enumerate(tables):
+ # Get results from the next table
+ res = get_results(conn, table[0])
+
+ data = dict()
+ for r in res:
+ data[r['kernel']] = r
+
+ table_data[table[0]] = data
+
+ if args.percent is not None:
+ for i,t in enumerate(table_data):
+ if args.percent == t:
+ norm_data = []
+ for name in name_reg:
+ if(args.plot == 'max'):
+ norm_data.append(table_data[t][name]['max'])
+ elif(args.plot == 'min'):
+ norm_data.append(table_data[t][name]['min'])
+ elif(args.plot == 'mean'):
+ norm_data.append(table_data[t][name]['avg'])
+
+
+ # Plot the results
+ x0 = xrange(len(name_reg))
+ i = 0
+ for t in (table_data):
+ ydata = []
+ stds = []
+ for name in name_reg:
+ stds.append(math.sqrt(table_data[t][name]['var']))
+ if(args.plot == 'max'):
+ ydata.append(table_data[t][name]['max'])
+ elif(args.plot == 'min'):
+ ydata.append(table_data[t][name]['min'])
+ elif(args.plot == 'mean'):
+ ydata.append(table_data[t][name]['avg'])
+
+ if args.percent is not None:
+ ydata = [-100*(y-n)/y for y,n in zip(ydata,norm_data)]
+ if(args.percent != t):
+ # makes x values for this data set placement
+ # width of bars depends on number of comparisons
+ wdth = 0.80/(M-1)
+ x1 = [x + i*wdth for x in x0]
+ i += 1
+
+ s0.bar(x1, ydata, width=wdth,
+ color=colors[(i-1)%M], label=t,
+ edgecolor='k', linewidth=2)
+
+ else:
+ # makes x values for this data set placement
+ # width of bars depends on number of comparisons
+ wdth = 0.80/M
+ x1 = [x + i*wdth for x in x0]
+ i += 1
+
+ if(args.errorbars is False):
+ s0.bar(x1, ydata, width=wdth,
+ color=colors[(i-1)%M], label=t,
+ edgecolor='k', linewidth=2)
+ else:
+ s0.bar(x1, ydata, width=wdth,
+ yerr=stds,
+ color=colors[i%M], label=t,
+ edgecolor='k', linewidth=2,
+ error_kw={"ecolor": 'k', "capsize":5,
+ "linewidth":2})
+
+ nitems = res[0]['nitems']
+ if args.percent is None:
+ s0.set_ylabel("Processing time (sec) [{0:G} items]".format(nitems),
+ fontsize=22, fontweight='bold',
+ horizontalalignment='center')
+ else:
+ s0.set_ylabel("% Improvement over {0} [{1:G} items]".format(
+ args.percent, nitems),
+ fontsize=22, fontweight='bold')
+
+ s0.legend()
+ s0.set_xticks(x0)
+ s0.set_xticklabels(name_reg)
+ for label in s0.xaxis.get_ticklabels():
+ label.set_rotation(45)
+ label.set_fontsize(16)
+
+ plt.show()
+
+if __name__ == "__main__":
+ main()