summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/volk_benchmark/volk_plot.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/volk_benchmark/volk_plot.py')
-rwxr-xr-xgnuradio-examples/python/volk_benchmark/volk_plot.py169
1 files changed, 0 insertions, 169 deletions
diff --git a/gnuradio-examples/python/volk_benchmark/volk_plot.py b/gnuradio-examples/python/volk_benchmark/volk_plot.py
deleted file mode 100755
index 823dfbf64..000000000
--- a/gnuradio-examples/python/volk_benchmark/volk_plot.py
+++ /dev/null
@@ -1,169 +0,0 @@
-#!/usr/bin/env python
-
-import sys, math
-import argparse
-from volk_test_funcs import *
-
-try:
- import matplotlib
- import matplotlib.pyplot as plt
-except ImportError:
- sys.stderr.write("Could not import Matplotlib (http://matplotlib.sourceforge.net/)\n")
- sys.exit(1)
-
-def main():
- desc='Plot Volk performance results from a SQLite database. ' + \
- 'Run one of the volk tests first (e.g, volk_math.py)'
- parser = argparse.ArgumentParser(description=desc)
- parser.add_argument('-D', '--database', type=str,
- default='volk_results.db',
- help='Database file to read data from [default: %(default)s]')
- parser.add_argument('-E', '--errorbars',
- action='store_true', default=False,
- help='Show error bars (1 standard dev.)')
- parser.add_argument('-P', '--plot', type=str,
- choices=['mean', 'min', 'max'],
- default='mean',
- help='Set the type of plot to produce [default: %(default)s]')
- parser.add_argument('-%', '--percent', type=str,
- default=None, metavar="table",
- help='Show percent difference to the given type [default: %(default)s]')
- args = parser.parse_args()
-
- # Set up global plotting properties
- matplotlib.rcParams['figure.subplot.bottom'] = 0.2
- matplotlib.rcParams['figure.subplot.top'] = 0.95
- matplotlib.rcParams['figure.subplot.right'] = 0.98
- matplotlib.rcParams['ytick.labelsize'] = 16
- matplotlib.rcParams['xtick.labelsize'] = 16
- matplotlib.rcParams['legend.fontsize'] = 18
-
- # Get list of tables to compare
- conn = create_connection(args.database)
- tables = list_tables(conn)
- M = len(tables)
-
- # Colors to distinguish each table in the bar graph
- # More than 5 tables will wrap around to the start.
- colors = ['b', 'r', 'g', 'm', 'k']
-
- # Set up figure for plotting
- f0 = plt.figure(0, facecolor='w', figsize=(14,10))
- s0 = f0.add_subplot(1,1,1)
-
- # Create a register of names that exist in all tables
- tmp_regs = []
- for table in tables:
- # Get results from the next table
- res = get_results(conn, table[0])
-
- tmp_regs.append(list())
- for r in res:
- try:
- tmp_regs[-1].index(r['kernel'])
- except ValueError:
- tmp_regs[-1].append(r['kernel'])
-
- # Get only those names that are common in all tables
- name_reg = tmp_regs[0]
- for t in tmp_regs[1:]:
- name_reg = list(set(name_reg) & set(t))
- name_reg.sort()
-
- # Pull the data out for each table into a dictionary
- # we can ref the table by it's name and the data associated
- # with a given kernel in name_reg by it's name.
- # This ensures there is no sorting issue with the data in the
- # dictionary, so the kernels are plotted against each other.
- table_data = dict()
- for i,table in enumerate(tables):
- # Get results from the next table
- res = get_results(conn, table[0])
-
- data = dict()
- for r in res:
- data[r['kernel']] = r
-
- table_data[table[0]] = data
-
- if args.percent is not None:
- for i,t in enumerate(table_data):
- if args.percent == t:
- norm_data = []
- for name in name_reg:
- if(args.plot == 'max'):
- norm_data.append(table_data[t][name]['max'])
- elif(args.plot == 'min'):
- norm_data.append(table_data[t][name]['min'])
- elif(args.plot == 'mean'):
- norm_data.append(table_data[t][name]['avg'])
-
-
- # Plot the results
- x0 = xrange(len(name_reg))
- i = 0
- for t in (table_data):
- ydata = []
- stds = []
- for name in name_reg:
- stds.append(math.sqrt(table_data[t][name]['var']))
- if(args.plot == 'max'):
- ydata.append(table_data[t][name]['max'])
- elif(args.plot == 'min'):
- ydata.append(table_data[t][name]['min'])
- elif(args.plot == 'mean'):
- ydata.append(table_data[t][name]['avg'])
-
- if args.percent is not None:
- ydata = [-100*(y-n)/y for y,n in zip(ydata,norm_data)]
- if(args.percent != t):
- # makes x values for this data set placement
- # width of bars depends on number of comparisons
- wdth = 0.80/(M-1)
- x1 = [x + i*wdth for x in x0]
- i += 1
-
- s0.bar(x1, ydata, width=wdth,
- color=colors[(i-1)%M], label=t,
- edgecolor='k', linewidth=2)
-
- else:
- # makes x values for this data set placement
- # width of bars depends on number of comparisons
- wdth = 0.80/M
- x1 = [x + i*wdth for x in x0]
- i += 1
-
- if(args.errorbars is False):
- s0.bar(x1, ydata, width=wdth,
- color=colors[(i-1)%M], label=t,
- edgecolor='k', linewidth=2)
- else:
- s0.bar(x1, ydata, width=wdth,
- yerr=stds,
- color=colors[i%M], label=t,
- edgecolor='k', linewidth=2,
- error_kw={"ecolor": 'k', "capsize":5,
- "linewidth":2})
-
- nitems = res[0]['nitems']
- if args.percent is None:
- s0.set_ylabel("Processing time (sec) [{0:G} items]".format(nitems),
- fontsize=22, fontweight='bold',
- horizontalalignment='center')
- else:
- s0.set_ylabel("% Improvement over {0} [{1:G} items]".format(
- args.percent, nitems),
- fontsize=22, fontweight='bold')
-
- s0.legend()
- s0.set_xticks(x0)
- s0.set_xticklabels(name_reg)
- for label in s0.xaxis.get_ticklabels():
- label.set_rotation(45)
- label.set_fontsize(16)
-
- plt.show()
-
-if __name__ == "__main__":
- main()