diff options
Diffstat (limited to 'gnuradio-examples/python/usrp/fm_tx4.py')
-rwxr-xr-x | gnuradio-examples/python/usrp/fm_tx4.py | 197 |
1 files changed, 0 insertions, 197 deletions
diff --git a/gnuradio-examples/python/usrp/fm_tx4.py b/gnuradio-examples/python/usrp/fm_tx4.py deleted file mode 100755 index a51668dde..000000000 --- a/gnuradio-examples/python/usrp/fm_tx4.py +++ /dev/null @@ -1,197 +0,0 @@ -#!/usr/bin/env python -# -# Copyright 2005,2006,2007 Free Software Foundation, Inc. -# -# This file is part of GNU Radio -# -# GNU Radio is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 3, or (at your option) -# any later version. -# -# GNU Radio is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with GNU Radio; see the file COPYING. If not, write to -# the Free Software Foundation, Inc., 51 Franklin Street, -# Boston, MA 02110-1301, USA. -# - -""" -Transmit N simultaneous narrow band FM signals. - -They will be centered at the frequency specified on the command line, -and will spaced at 25kHz steps from there. - -The program opens N files with names audio-N.dat where N is in [0,7]. -These files should contain floating point audio samples in the range [-1,1] -sampled at 32kS/sec. You can create files like this using -audio_to_file.py -""" - -from gnuradio import gr, eng_notation -from gnuradio import usrp -from gnuradio import audio -from gnuradio import blks2 -from gnuradio.eng_option import eng_option -from optparse import OptionParser -from usrpm import usrp_dbid -import math -import sys - -from gnuradio.wxgui import stdgui2, fftsink2 -#from gnuradio import tx_debug_gui -import wx - - -######################################################## -# instantiate one transmit chain for each call - -class pipeline(gr.hier_block2): - def __init__(self, filename, lo_freq, audio_rate, if_rate): - - gr.hier_block2.__init__(self, "pipeline", - gr.io_signature(0, 0, 0), # Input signature - gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature - - src = gr.file_source (gr.sizeof_float, filename, True) - fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6) - - # Local oscillator - lo = gr.sig_source_c (if_rate, # sample rate - gr.GR_SIN_WAVE, # waveform type - lo_freq, #frequency - 1.0, # amplitude - 0) # DC Offset - mixer = gr.multiply_cc () - - self.connect (src, fmtx, (mixer, 0)) - self.connect (lo, (mixer, 1)) - self.connect (mixer, self) - -class fm_tx_block(stdgui2.std_top_block): - def __init__(self, frame, panel, vbox, argv): - MAX_CHANNELS = 7 - stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv) - - parser = OptionParser (option_class=eng_option) - parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None, - help="select USRP Tx side A or B") - parser.add_option("-f", "--freq", type="eng_float", default=None, - help="set Tx frequency to FREQ [required]", metavar="FREQ") - parser.add_option("-n", "--nchannels", type="int", default=4, - help="number of Tx channels [1,4]") - #parser.add_option("","--debug", action="store_true", default=False, - # help="Launch Tx debugger") - (options, args) = parser.parse_args () - - if len(args) != 0: - parser.print_help() - sys.exit(1) - - if options.nchannels < 1 or options.nchannels > MAX_CHANNELS: - sys.stderr.write ("fm_tx4: nchannels out of range. Must be in [1,%d]\n" % MAX_CHANNELS) - sys.exit(1) - - if options.freq is None: - sys.stderr.write("fm_tx4: must specify frequency with -f FREQ\n") - parser.print_help() - sys.exit(1) - - # ---------------------------------------------------------------- - # Set up constants and parameters - - self.u = usrp.sink_c () # the USRP sink (consumes samples) - - self.dac_rate = self.u.dac_rate() # 128 MS/s - self.usrp_interp = 400 - self.u.set_interp_rate(self.usrp_interp) - self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s - self.sw_interp = 10 - self.audio_rate = self.usrp_rate / self.sw_interp # 32 kS/s - - # determine the daughterboard subdevice we're using - if options.tx_subdev_spec is None: - options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u) - - m = usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec) - #print "mux = %#04x" % (m,) - self.u.set_mux(m) - self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec) - print "Using TX d'board %s" % (self.subdev.side_and_name(),) - - self.subdev.set_gain(self.subdev.gain_range()[1]) # set max Tx gain - if not self.set_freq(options.freq): - freq_range = self.subdev.freq_range() - print "Failed to set frequency to %s. Daughterboard supports %s to %s" % ( - eng_notation.num_to_str(options.freq), - eng_notation.num_to_str(freq_range[0]), - eng_notation.num_to_str(freq_range[1])) - raise SystemExit - self.subdev.set_enable(True) # enable transmitter - - sum = gr.add_cc () - - # Instantiate N NBFM channels - step = 25e3 - offset = (0 * step, 1 * step, -1 * step, 2 * step, -2 * step, 3 * step, -3 * step) - for i in range (options.nchannels): - t = pipeline("audio-%d.dat" % (i % 4), offset[i], - self.audio_rate, self.usrp_rate) - self.connect(t, (sum, i)) - - gain = gr.multiply_const_cc (4000.0 / options.nchannels) - - # connect it all - self.connect (sum, gain) - self.connect (gain, self.u) - - # plot an FFT to verify we are sending what we want - if 1: - post_mod = fftsink2.fft_sink_c(panel, title="Post Modulation", - fft_size=512, sample_rate=self.usrp_rate, - y_per_div=20, ref_level=40) - self.connect (sum, post_mod) - vbox.Add (post_mod.win, 1, wx.EXPAND) - - - #if options.debug: - # self.debugger = tx_debug_gui.tx_debug_gui(self.subdev) - # self.debugger.Show(True) - - - def set_freq(self, target_freq): - """ - Set the center frequency we're interested in. - - @param target_freq: frequency in Hz - @rypte: bool - - Tuning is a two step process. First we ask the front-end to - tune as close to the desired frequency as it can. Then we use - the result of that operation and our target_frequency to - determine the value for the digital up converter. Finally, we feed - any residual_freq to the s/w freq translater. - """ - - r = self.u.tune(self.subdev.which(), self.subdev, target_freq) - if r: - print "r.baseband_freq =", eng_notation.num_to_str(r.baseband_freq) - print "r.dxc_freq =", eng_notation.num_to_str(r.dxc_freq) - print "r.residual_freq =", eng_notation.num_to_str(r.residual_freq) - print "r.inverted =", r.inverted - - # Could use residual_freq in s/w freq translator - return True - - return False - -def main (): - app = stdgui2.stdapp(fm_tx_block, "Multichannel FM Tx", nstatus=1) - app.MainLoop () - -if __name__ == '__main__': - main () |