summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/pfb/interpolate.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/pfb/interpolate.py')
-rwxr-xr-xgnuradio-examples/python/pfb/interpolate.py233
1 files changed, 0 insertions, 233 deletions
diff --git a/gnuradio-examples/python/pfb/interpolate.py b/gnuradio-examples/python/pfb/interpolate.py
deleted file mode 100755
index 370cf26a7..000000000
--- a/gnuradio-examples/python/pfb/interpolate.py
+++ /dev/null
@@ -1,233 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
- from pylab import mlab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class pfb_top_block(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._N = 100000 # number of samples to use
- self._fs = 2000 # initial sampling rate
- self._interp = 5 # Interpolation rate for PFB interpolator
- self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler
-
- # Frequencies of the signals we construct
- freq1 = 100
- freq2 = 200
-
- # Create a set of taps for the PFB interpolator
- # This is based on the post-interpolation sample rate
- self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50,
- attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Create a set of taps for the PFB arbitrary resampler
- # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes,
- # and larger numbers will reduce these even farther
- # The taps in this filter are based on a sampling rate of the filter size since it acts
- # internally as an interpolator.
- flt_size = 32
- self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150,
- attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Calculate the number of taps per channel for our own information
- tpc = scipy.ceil(float(len(self._taps)) / float(self._interp))
- print "Number of taps: ", len(self._taps)
- print "Number of filters: ", self._interp
- print "Taps per channel: ", tpc
-
- # Create a couple of signals at different frequencies
- self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
- self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
- self.signal = gr.add_cc()
-
- self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
- # Construct the PFB interpolator filter
- self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
-
- # Construct the PFB arbitrary resampler filter
- self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, flt_size)
- self.snk_i = gr.vector_sink_c()
-
- #self.pfb_ar.pfb.print_taps()
- #self.pfb.pfb.print_taps()
-
- # Connect the blocks
- self.connect(self.signal1, self.head, (self.signal,0))
- self.connect(self.signal2, (self.signal,1))
- self.connect(self.signal, self.pfb)
- self.connect(self.signal, self.pfb_ar)
- self.connect(self.signal, self.snk_i)
-
- # Create the sink for the interpolated signals
- self.snk1 = gr.vector_sink_c()
- self.snk2 = gr.vector_sink_c()
- self.connect(self.pfb, self.snk1)
- self.connect(self.pfb_ar, self.snk2)
-
-
-def main():
- tb = pfb_top_block()
-
- tstart = time.time()
- tb.run()
- tend = time.time()
- print "Run time: %f" % (tend - tstart)
-
-
- if 1:
- fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
- fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
- fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
-
- Ns = 10000
- Ne = 10000
-
- fftlen = 8192
- winfunc = scipy.blackman
-
- # Plot input signal
- fs = tb._fs
-
- d = tb.snk_i.data()[Ns:Ns+Ne]
- sp1_f = fig1.add_subplot(2, 1, 1)
-
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- p1_f = sp1_f.plot(f_in, X_in, "b")
- sp1_f.set_xlim([min(f_in), max(f_in)+1])
- sp1_f.set_ylim([-200.0, 50.0])
-
-
- sp1_f.set_title("Input Signal", weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- sp1_t = fig1.add_subplot(2, 1, 2)
- p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
- #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
- sp1_t.set_ylim([-2.5, 2.5])
-
- sp1_t.set_title("Input Signal", weight="bold")
- sp1_t.set_xlabel("Time (s)")
- sp1_t.set_ylabel("Amplitude")
-
-
- # Plot output of PFB interpolator
- fs_int = tb._fs*tb._interp
-
- sp2_f = fig2.add_subplot(2, 1, 1)
- d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size))
- p2_f = sp2_f.plot(f_o, X_o, "b")
- sp2_f.set_xlim([min(f_o), max(f_o)+1])
- sp2_f.set_ylim([-200.0, 50.0])
-
- sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
- sp2_f.set_xlabel("Frequency (Hz)")
- sp2_f.set_ylabel("Power (dBW)")
-
- Ts_int = 1.0/fs_int
- Tmax = len(d)*Ts_int
-
- t_o = scipy.arange(0, Tmax, Ts_int)
- x_o1 = scipy.array(d)
- sp2_t = fig2.add_subplot(2, 1, 2)
- p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
- #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
- sp2_t.set_ylim([-2.5, 2.5])
-
- sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
- sp2_t.set_xlabel("Time (s)")
- sp2_t.set_ylabel("Amplitude")
-
-
- # Plot output of PFB arbitrary resampler
- fs_aint = tb._fs * tb._ainterp
-
- sp3_f = fig3.add_subplot(2, 1, 1)
- d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size))
- p3_f = sp3_f.plot(f_o, X_o, "b")
- sp3_f.set_xlim([min(f_o), max(f_o)+1])
- sp3_f.set_ylim([-200.0, 50.0])
-
- sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
- sp3_f.set_xlabel("Frequency (Hz)")
- sp3_f.set_ylabel("Power (dBW)")
-
- Ts_aint = 1.0/fs_aint
- Tmax = len(d)*Ts_aint
-
- t_o = scipy.arange(0, Tmax, Ts_aint)
- x_o2 = scipy.array(d)
- sp3_f = fig3.add_subplot(2, 1, 2)
- p3_f = sp3_f.plot(t_o, x_o2.real, "b-o")
- p3_f = sp3_f.plot(t_o, x_o1.real, "m-o")
- #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o")
- sp3_f.set_ylim([-2.5, 2.5])
-
- sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
- sp3_f.set_xlabel("Time (s)")
- sp3_f.set_ylabel("Amplitude")
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-