diff options
Diffstat (limited to 'gnuradio-examples/python/pfb/fmtest.py')
-rwxr-xr-x | gnuradio-examples/python/pfb/fmtest.py | 225 |
1 files changed, 0 insertions, 225 deletions
diff --git a/gnuradio-examples/python/pfb/fmtest.py b/gnuradio-examples/python/pfb/fmtest.py deleted file mode 100755 index 635ee4e9e..000000000 --- a/gnuradio-examples/python/pfb/fmtest.py +++ /dev/null @@ -1,225 +0,0 @@ -#!/usr/bin/env python -# -# Copyright 2009 Free Software Foundation, Inc. -# -# This file is part of GNU Radio -# -# GNU Radio is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 3, or (at your option) -# any later version. -# -# GNU Radio is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with GNU Radio; see the file COPYING. If not, write to -# the Free Software Foundation, Inc., 51 Franklin Street, -# Boston, MA 02110-1301, USA. -# - -from gnuradio import gr, blks2 -import sys, math, time - -try: - import scipy - from scipy import fftpack -except ImportError: - print "Error: Program requires scipy (see: www.scipy.org)." - sys.exit(1) - -try: - import pylab -except ImportError: - print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." - sys.exit(1) - - -class fmtx(gr.hier_block2): - def __init__(self, lo_freq, audio_rate, if_rate): - - gr.hier_block2.__init__(self, "build_fm", - gr.io_signature(1, 1, gr.sizeof_float), # Input signature - gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature - - fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6) - - # Local oscillator - lo = gr.sig_source_c (if_rate, # sample rate - gr.GR_SIN_WAVE, # waveform type - lo_freq, #frequency - 1.0, # amplitude - 0) # DC Offset - mixer = gr.multiply_cc () - - self.connect (self, fmtx, (mixer, 0)) - self.connect (lo, (mixer, 1)) - self.connect (mixer, self) - -class fmtest(gr.top_block): - def __init__(self): - gr.top_block.__init__(self) - - self._nsamples = 1000000 - self._audio_rate = 8000 - - # Set up N channels with their own baseband and IF frequencies - self._N = 5 - chspacing = 16000 - freq = [10, 20, 30, 40, 50] - f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing] - - self._if_rate = 4*self._N*self._audio_rate - - # Create a signal source and frequency modulate it - self.sum = gr.add_cc () - for n in xrange(self._N): - sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5) - fm = fmtx(f_lo[n], self._audio_rate, self._if_rate) - self.connect(sig, fm) - self.connect(fm, (self.sum, n)) - - self.head = gr.head(gr.sizeof_gr_complex, self._nsamples) - self.snk_tx = gr.vector_sink_c() - self.channel = blks2.channel_model(0.1) - - self.connect(self.sum, self.head, self.channel, self.snk_tx) - - - # Design the channlizer - self._M = 10 - bw = chspacing/2.0 - t_bw = chspacing/10.0 - self._chan_rate = self._if_rate / self._M - self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw, - attenuation_dB=100, - window=gr.firdes.WIN_BLACKMAN_hARRIS) - tpc = math.ceil(float(len(self._taps)) / float(self._M)) - - print "Number of taps: ", len(self._taps) - print "Number of channels: ", self._M - print "Taps per channel: ", tpc - - self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps) - - self.connect(self.channel, self.pfb) - - # Create a file sink for each of M output channels of the filter and connect it - self.fmdet = list() - self.squelch = list() - self.snks = list() - for i in xrange(self._M): - self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate)) - self.squelch.append(blks2.standard_squelch(self._audio_rate*10)) - self.snks.append(gr.vector_sink_f()) - self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i]) - - def num_tx_channels(self): - return self._N - - def num_rx_channels(self): - return self._M - -def main(): - - fm = fmtest() - - tstart = time.time() - fm.run() - tend = time.time() - - if 1: - fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") - fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") - fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") - - Ns = 10000 - Ne = 100000 - - fftlen = 8192 - winfunc = scipy.blackman - - # Plot transmitted signal - fs = fm._if_rate - - d = fm.snk_tx.data()[Ns:Ns+Ne] - sp1_f = fig1.add_subplot(2, 1, 1) - - X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, - window = lambda d: d*winfunc(fftlen), - visible=False) - X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) - f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) - p1_f = sp1_f.plot(f_in, X_in, "b") - sp1_f.set_xlim([min(f_in), max(f_in)+1]) - sp1_f.set_ylim([-120.0, 20.0]) - - sp1_f.set_title("Input Signal", weight="bold") - sp1_f.set_xlabel("Frequency (Hz)") - sp1_f.set_ylabel("Power (dBW)") - - Ts = 1.0/fs - Tmax = len(d)*Ts - - t_in = scipy.arange(0, Tmax, Ts) - x_in = scipy.array(d) - sp1_t = fig1.add_subplot(2, 1, 2) - p1_t = sp1_t.plot(t_in, x_in.real, "b-o") - #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") - sp1_t.set_ylim([-5, 5]) - - # Set up the number of rows and columns for plotting the subfigures - Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels()))) - Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols)) - if(fm.num_rx_channels() % Ncols != 0): - Nrows += 1 - - # Plot each of the channels outputs. Frequencies on Figure 2 and - # time signals on Figure 3 - fs_o = fm._audio_rate - for i in xrange(len(fm.snks)): - # remove issues with the transients at the beginning - # also remove some corruption at the end of the stream - # this is a bug, probably due to the corner cases - d = fm.snks[i].data()[Ns:Ne] - - sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i) - X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, - window = lambda d: d*winfunc(fftlen), - visible=False) - #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) - X_o = 10.0*scipy.log10(abs(X)) - #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) - f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size)) - p2_f = sp2_f.plot(f_o, X_o, "b") - sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) - sp2_f.set_ylim([-120.0, 20.0]) - sp2_f.grid(True) - - sp2_f.set_title(("Channel %d" % i), weight="bold") - sp2_f.set_xlabel("Frequency (kHz)") - sp2_f.set_ylabel("Power (dBW)") - - - Ts = 1.0/fs_o - Tmax = len(d)*Ts - t_o = scipy.arange(0, Tmax, Ts) - - x_t = scipy.array(d) - sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i) - p2_t = sp2_t.plot(t_o, x_t.real, "b") - p2_t = sp2_t.plot(t_o, x_t.imag, "r") - sp2_t.set_xlim([min(t_o), max(t_o)+1]) - sp2_t.set_ylim([-1, 1]) - - sp2_t.set_xlabel("Time (s)") - sp2_t.set_ylabel("Amplitude") - - - pylab.show() - - -if __name__ == "__main__": - main() |