summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/pfb/fmtest.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/pfb/fmtest.py')
-rwxr-xr-xgnuradio-examples/python/pfb/fmtest.py225
1 files changed, 0 insertions, 225 deletions
diff --git a/gnuradio-examples/python/pfb/fmtest.py b/gnuradio-examples/python/pfb/fmtest.py
deleted file mode 100755
index 635ee4e9e..000000000
--- a/gnuradio-examples/python/pfb/fmtest.py
+++ /dev/null
@@ -1,225 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, math, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-
-class fmtx(gr.hier_block2):
- def __init__(self, lo_freq, audio_rate, if_rate):
-
- gr.hier_block2.__init__(self, "build_fm",
- gr.io_signature(1, 1, gr.sizeof_float), # Input signature
- gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
-
- fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
-
- # Local oscillator
- lo = gr.sig_source_c (if_rate, # sample rate
- gr.GR_SIN_WAVE, # waveform type
- lo_freq, #frequency
- 1.0, # amplitude
- 0) # DC Offset
- mixer = gr.multiply_cc ()
-
- self.connect (self, fmtx, (mixer, 0))
- self.connect (lo, (mixer, 1))
- self.connect (mixer, self)
-
-class fmtest(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._nsamples = 1000000
- self._audio_rate = 8000
-
- # Set up N channels with their own baseband and IF frequencies
- self._N = 5
- chspacing = 16000
- freq = [10, 20, 30, 40, 50]
- f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]
-
- self._if_rate = 4*self._N*self._audio_rate
-
- # Create a signal source and frequency modulate it
- self.sum = gr.add_cc ()
- for n in xrange(self._N):
- sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
- fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
- self.connect(sig, fm)
- self.connect(fm, (self.sum, n))
-
- self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
- self.snk_tx = gr.vector_sink_c()
- self.channel = blks2.channel_model(0.1)
-
- self.connect(self.sum, self.head, self.channel, self.snk_tx)
-
-
- # Design the channlizer
- self._M = 10
- bw = chspacing/2.0
- t_bw = chspacing/10.0
- self._chan_rate = self._if_rate / self._M
- self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw,
- attenuation_dB=100,
- window=gr.firdes.WIN_BLACKMAN_hARRIS)
- tpc = math.ceil(float(len(self._taps)) / float(self._M))
-
- print "Number of taps: ", len(self._taps)
- print "Number of channels: ", self._M
- print "Taps per channel: ", tpc
-
- self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-
- self.connect(self.channel, self.pfb)
-
- # Create a file sink for each of M output channels of the filter and connect it
- self.fmdet = list()
- self.squelch = list()
- self.snks = list()
- for i in xrange(self._M):
- self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
- self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
- self.snks.append(gr.vector_sink_f())
- self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])
-
- def num_tx_channels(self):
- return self._N
-
- def num_rx_channels(self):
- return self._M
-
-def main():
-
- fm = fmtest()
-
- tstart = time.time()
- fm.run()
- tend = time.time()
-
- if 1:
- fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
- fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
- fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
-
- Ns = 10000
- Ne = 100000
-
- fftlen = 8192
- winfunc = scipy.blackman
-
- # Plot transmitted signal
- fs = fm._if_rate
-
- d = fm.snk_tx.data()[Ns:Ns+Ne]
- sp1_f = fig1.add_subplot(2, 1, 1)
-
- X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- visible=False)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- p1_f = sp1_f.plot(f_in, X_in, "b")
- sp1_f.set_xlim([min(f_in), max(f_in)+1])
- sp1_f.set_ylim([-120.0, 20.0])
-
- sp1_f.set_title("Input Signal", weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- sp1_t = fig1.add_subplot(2, 1, 2)
- p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
- #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
- sp1_t.set_ylim([-5, 5])
-
- # Set up the number of rows and columns for plotting the subfigures
- Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
- Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
- if(fm.num_rx_channels() % Ncols != 0):
- Nrows += 1
-
- # Plot each of the channels outputs. Frequencies on Figure 2 and
- # time signals on Figure 3
- fs_o = fm._audio_rate
- for i in xrange(len(fm.snks)):
- # remove issues with the transients at the beginning
- # also remove some corruption at the end of the stream
- # this is a bug, probably due to the corner cases
- d = fm.snks[i].data()[Ns:Ne]
-
- sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
- X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
- window = lambda d: d*winfunc(fftlen),
- visible=False)
- #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- X_o = 10.0*scipy.log10(abs(X))
- #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
- f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
- p2_f = sp2_f.plot(f_o, X_o, "b")
- sp2_f.set_xlim([min(f_o), max(f_o)+0.1])
- sp2_f.set_ylim([-120.0, 20.0])
- sp2_f.grid(True)
-
- sp2_f.set_title(("Channel %d" % i), weight="bold")
- sp2_f.set_xlabel("Frequency (kHz)")
- sp2_f.set_ylabel("Power (dBW)")
-
-
- Ts = 1.0/fs_o
- Tmax = len(d)*Ts
- t_o = scipy.arange(0, Tmax, Ts)
-
- x_t = scipy.array(d)
- sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
- p2_t = sp2_t.plot(t_o, x_t.real, "b")
- p2_t = sp2_t.plot(t_o, x_t.imag, "r")
- sp2_t.set_xlim([min(t_o), max(t_o)+1])
- sp2_t.set_ylim([-1, 1])
-
- sp2_t.set_xlabel("Time (s)")
- sp2_t.set_ylabel("Amplitude")
-
-
- pylab.show()
-
-
-if __name__ == "__main__":
- main()