summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/pfb/decimate.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/pfb/decimate.py')
-rwxr-xr-xgnuradio-examples/python/pfb/decimate.py178
1 files changed, 0 insertions, 178 deletions
diff --git a/gnuradio-examples/python/pfb/decimate.py b/gnuradio-examples/python/pfb/decimate.py
deleted file mode 100755
index 643a2c241..000000000
--- a/gnuradio-examples/python/pfb/decimate.py
+++ /dev/null
@@ -1,178 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
- from pylab import mlab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class pfb_top_block(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._N = 10000000 # number of samples to use
- self._fs = 10000 # initial sampling rate
- self._decim = 20 # Decimation rate
-
- # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth
- self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 150,
- attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Calculate the number of taps per channel for our own information
- tpc = scipy.ceil(float(len(self._taps)) / float(self._decim))
- print "Number of taps: ", len(self._taps)
- print "Number of filters: ", self._decim
- print "Taps per channel: ", tpc
-
- # Build the input signal source
- # We create a list of freqs, and a sine wave is generated and added to the source
- # for each one of these frequencies.
- self.signals = list()
- self.add = gr.add_cc()
- freqs = [10, 20, 2040]
- for i in xrange(len(freqs)):
- self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
- self.connect(self.signals[i], (self.add,i))
-
- self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
- # Construct a PFB decimator filter
- self.pfb = blks2.pfb_decimator_ccf(self._decim, self._taps, 0)
-
- # Construct a standard FIR decimating filter
- self.dec = gr.fir_filter_ccf(self._decim, self._taps)
-
- self.snk_i = gr.vector_sink_c()
-
- # Connect the blocks
- self.connect(self.add, self.head, self.pfb)
- self.connect(self.add, self.snk_i)
-
- # Create the sink for the decimated siganl
- self.snk = gr.vector_sink_c()
- self.connect(self.pfb, self.snk)
-
-
-def main():
- tb = pfb_top_block()
-
- tstart = time.time()
- tb.run()
- tend = time.time()
- print "Run time: %f" % (tend - tstart)
-
- if 1:
- fig1 = pylab.figure(1, figsize=(16,9))
- fig2 = pylab.figure(2, figsize=(16,9))
-
- Ns = 10000
- Ne = 10000
-
- fftlen = 8192
- winfunc = scipy.blackman
- fs = tb._fs
-
- # Plot the input to the decimator
-
- d = tb.snk_i.data()[Ns:Ns+Ne]
- sp1_f = fig1.add_subplot(2, 1, 1)
-
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- p1_f = sp1_f.plot(f_in, X_in, "b")
- sp1_f.set_xlim([min(f_in), max(f_in)+1])
- sp1_f.set_ylim([-200.0, 50.0])
-
- sp1_f.set_title("Input Signal", weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- sp1_t = fig1.add_subplot(2, 1, 2)
- p1_t = sp1_t.plot(t_in, x_in.real, "b")
- p1_t = sp1_t.plot(t_in, x_in.imag, "r")
- sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1])
-
- sp1_t.set_xlabel("Time (s)")
- sp1_t.set_ylabel("Amplitude")
-
-
- # Plot the output of the decimator
- fs_o = tb._fs / tb._decim
-
- sp2_f = fig2.add_subplot(2, 1, 1)
- d = tb.snk.data()[Ns:Ns+Ne]
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
- p2_f = sp2_f.plot(f_o, X_o, "b")
- sp2_f.set_xlim([min(f_o), max(f_o)+1])
- sp2_f.set_ylim([-200.0, 50.0])
-
- sp2_f.set_title("PFB Decimated Signal", weight="bold")
- sp2_f.set_xlabel("Frequency (Hz)")
- sp2_f.set_ylabel("Power (dBW)")
-
-
- Ts_o = 1.0/fs_o
- Tmax_o = len(d)*Ts_o
-
- x_o = scipy.array(d)
- t_o = scipy.arange(0, Tmax_o, Ts_o)
- sp2_t = fig2.add_subplot(2, 1, 2)
- p2_t = sp2_t.plot(t_o, x_o.real, "b-o")
- p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
- sp2_t.set_ylim([-2.5, 2.5])
-
- sp2_t.set_xlabel("Time (s)")
- sp2_t.set_ylabel("Amplitude")
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-